15 research outputs found

    Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pseudomonas syringae </it>is a widespread bacterial plant pathogen, and strains of <it>P. syringae </it>may be assigned to different pathovars based on host specificity among different plant species. The genomes of <it>P. syringae </it>pv. <it>syringae </it>(<it>Psy</it>) B728a, pv. <it>tomato </it>(<it>Pto</it>) DC3000 and pv. <it>phaseolicola </it>(<it>Pph</it>) 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS), which typically consists of a sensor histidine kinase (HK) and a response regulator (RR). <it>P. syringae </it>requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions.</p> <p>Results</p> <p>Based on the genomic data, pattern searches with Hidden Markov Model (HMM) profiles have been used to identify putative HKs and RRs. The genomes of <it>Psy </it>B728a, <it>Pto </it>DC3000 and <it>Pph </it>1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed important differences in TCS proteins among the three <it>P. syringae </it>pathovars.</p> <p>Conclusion</p> <p>In this article we present a thorough analysis of the identification and distribution of TCS proteins among the sequenced genomes of <it>P. syringae</it>. We have identified differences in TCS proteins among the three <it>P. syringae </it>pathovars that may contribute to their diverse host ranges and association with plant hosts. The identification and analysis of the repertoire of TCS proteins in the genomes of <it>P. syringae </it>pathovars constitute a basis for future functional genomic studies of the signal transduction pathways in this important bacterial phytopathogen.</p

    A Gene Encoding Arginyl-tRNA Synthetase Is Located in the Upstream Region of the lysA Gene in Brevibacterium lactofermentum: Regulation of argS-lysA Cluster Expression by Arginine

    Get PDF
    International audienceThe Brevibacterium lactofermentum argS gene, which encodes an arginyl-tRNA synthetase, was identified in the upstream region of the lysA gene. The cloned gene was sequenced; it encodes a 550-amino-acid protein with an Mr of 59,797. The deduced amino acid sequence showed 28% identical and 49% similar residues when compared with the sequence of the Escherichia coli arginyl-tRNA synthetase. The B. lactofermentum enzyme showed the highly conserved motifs of class I aminoacyl-tRNA synthetases. Expression of the argS gene in B. lactofermentum and E. coli resulted in an increase in aminoacyl-tRNA synthetase activity, correlated with the presence in sodium dodecyl sulfate-polyacrylamide gels of a clear protein band that corresponds to this enzyme. One single transcript of about 3,000 nucleotides and corresponding to the B. lactofermentum argS-lysA operon was identified. The transcription of these genes is repressed by lysine and induced by arginine, showing an interesting pattern of biosynthetic interlock between the pathways of both amino acids in corynebacteria

    Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

    Get PDF
    [EN] Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.European funds (European Regional Development Fund, ERDF); Spanish Ministerio de Economı´a y Competitividad; Junta de Andalucí

    Differences in two-component signal transduction proteins among the genus Brucella: Implications for host preference and pathogenesis

    No full text
    et al.Two-component systems (TCSs) are the predominant bacterial signal transduction mechanisms. Species of the genus Brucella are genetically highly related and differ mainly in mammalian host adaptation and pathogenesis. In this study, TCS proteins encoded in the available genome sequences of Brucella species have been identified using bioinformatic methods. All the Brucella species share an identical set of TCS proteins, and the number of TCS proteins in the closely related opportunistic human pathogen Ochrobactrum anthropi was higher than in Brucella species as expected from its lifestyle. O. anthropi lacks orthologs of the Brucella TCSs NodVW, TceSR and TcfSR, suggesting that these TCS proteins could be necessary for the adaptation of Brucella as an intracellular pathogen. This genomic analysis revealed the presence of a differential distribution of TCS pseudogenes among Brucella species. Moreover, there were also differences in TCS pseudogenes between strains belonging to the same Brucella species, and in particular between B. suis biovars 1 and 2.This work has been supported by research project GEN2006-27843-E of the MEC and by Institutional Grants from the Universidad Pública de Navarra.Peer reviewe

    Molecular and Insecticidal Characterization of a Cry1I Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae

    No full text
    The most notable characteristic of Bacillus thuringiensis is its ability to produce insecticidal proteins. More than 300 different proteins have been described with specific activity against insect species. We report the molecular and insecticidal characterization of a novel cry gene encoding a protein of the Cry1I group with toxic activity towards insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. PCR analysis detected a DNA sequence with an open reading frame of 2.2 kb which encodes a protein with a molecular mass of 80.9 kDa. Trypsin digestion of this protein resulted in a fragment of ca. 60 kDa, typical of activated Cry1 proteins. The deduced sequence of the protein has homologies of 96.1% with Cry1Ia1, 92.8% with Cry1Ib1, and 89.6% with Cry1Ic1. According to the Cry protein classification criteria, this protein was named Cry1Ia7. The expression of the gene in Escherichia coli resulted in a protein that was water soluble and toxic to several insect species. The 50% lethal concentrations for larvae of Earias insulana, Lobesia botrana, Plutella xylostella, and Leptinotarsa decemlineata were 21.1, 8.6, 12.3, and 10.0 μg/ml, respectively. Binding assays with biotinylated toxins to E. insulana and L. botrana midgut membrane vesicles revealed that Cry1Ia7 does not share binding sites with Cry1Ab or Cry1Ac proteins, which are commonly present in B. thuringiensis-treated crops and commercial B. thuringiensis-based bioinsecticides. We discuss the potential of Cry1Ia7 as an active ingredient which can be used in combination with Cry1Ab or Cry1Ac in pest control and the management of resistance to B. thuringiensis toxins

    Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi

    Get PDF
    Background: Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. Results: Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron’s boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. Conclusion: P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.This work was supported by funds from the AGL2011-30495 project of the Spanish National Research Plan and by additional institutional support from the Public University of Navarr
    corecore