699 research outputs found
Detection of Powerful Mid-IR H_2 Emission in the Bridge between the Taffy Galaxies
We report the detection of strong, resolved emission from warm H_2 in the Taffy galaxies and bridge. Relative to the continuum and faint polyclic aromatic hydrocarbon (PAH) emission, the H_2 emission is the strongest in the connecting bridge, approaching L(H_2)/L(PAH 8 μm) = 0.1 between the two galaxies, where the purely rotational lines of H_2 dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephan's Quintet (SQ). The surface brightness in the 0-0 S(0) and S(1) H_2 lines in the bridge is more than twice that observed at the center of the SQ shock. We observe a warm H2 mass of 4.2 × 10^8 M_☉ in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of ~5 × 10^6 M_☉ kpc^(–2) and typical excitation temperatures of 150-175 K. H_2 emission is also seen in the galaxy disks, although there the emission is more consistent with normal star-forming galaxies. We investigate several possible heating mechanisms for the bridge gas but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H_2 is short (~5000 yr), shocks must be permeating the molecular gas in the bridge region in order to continue heating the H_2
Powerful H Line-cooling in Stephan's Quintet : I - Mapping the Significant Cooling Pathways in Group-wide Shocks
We present results from the mid-infrared spectral mapping of Stephan's
Quintet using the Spitzer Space Telescope. A 1000 km/s collision has produced a
group-wide shock and for the first time the large-scale distribution of warm
molecular hydrogen emission is revealed, as well as its close association with
known shock structures. In the main shock region alone we find 5.0
M of warm H spread over 480 kpc and
additionally report the discovery of a second major shock-excited H
feature. This brings the total H line luminosity of the group in excess of
10 erg/s. In the main shock, the H line luminosity exceeds, by a
factor of three, the X-ray luminosity from the hot shocked gas, confirming that
the H-cooling pathway dominates over the X-ray. [Si II]34.82m
emission, detected at a luminosity of 1/10th of that of the H, appears to
trace the group-wide shock closely and in addition, we detect weak
[FeII]25.99m emission from the most X-ray luminous part of the shock.
Comparison with shock models reveals that this emission is consistent with
regions of fast shocks (100 < < 300 km/s) experiencing depletion of
iron and silicon onto dust grains. Star formation in the shock (as traced via
ionic lines, PAH and dust emission) appears in the intruder galaxy, but most
strikingly at either end of the radio shock. The shock ridge itself shows
little star formation, consistent with a model in which the tremendous H
power is driven by turbulent energy transfer from motions in a post-shocked
layer. The significance of the molecular hydrogen lines over other measured
sources of cooling in fast galaxy-scale shocks may have crucial implications
for the cooling of gas in the assembly of the first galaxies.Comment: 23 pages, 15 figures, Accepted to Ap
Structure of the Accretion Flow in Broad-Line Radio Galaxies: The Case of 3C390.3
We present XMM and Suzaku observations of the Broad-Line Radio Galaxy (BLRG)
3C390.3. The Fe Ka line has a width FWHM ~ 8,800 km/s, consistent within a
factor two with the width of the double-peaked H_alpha line, suggesting an
origin from the Broad Line Region. The data show for the first time a weak,
broad bump extending from 5 to 7 keV. When fitted with a Gaussian, its centroid
energy is 6.6 keV in the source's rest-frame with FWHM of 43,000 km/s and EW of
50 eV; its most likely interpretation is emission from He-like Fe (Fe XXV),
suggesting the presence of an ionized medium in the inner regions of 3C390.3.
The broad-band 0.5-100 keV continuum is well described by a single power law
with photon index Gamma=1.6 and cutoff energy 157 keV, plus cold reflection
with strength R=0.5. In addition, ionized reflection is required to account for
the 6.6 keV bump in the broad-band continuum, yielding an ionization parameter
xi ~ 2700 ergs cm s^-1; the inner radius of the ionized reflector is
constrained to be larger than 20 r_G, although this result depends on the
assumed emissivity profile of the disk. If true, we argue that the lack of
broad Fe K emission from within 20 r_G indicates that the innermost regions of
the disk in 3C390.3 are obscured and/or poorly illuminated. While the SED of
3C390.3 is generally dominated by accretion-related continuum, during accretion
low states the jet can significantly contribute in the optical to X-ray bands
via synchrotron self-Compton emission. (Abridged)Comment: 7 figures, 5 tables, accepted for publication in Ap
Advancing national greenhouse gas inventories for agriculture in developing countries : improving activity data, emission factors and software technology
Peer reviewedPublisher PD
Simultaneous X-ray and UV spectroscopy of the Seyfert 1 galaxy NGC 5548.II. Physical conditions in the X-ray absorber
We present the results from a 500 ks Chandra observation of the Seyfert 1
galaxy NGC 5548. We detect broadened emission lines of O VII and C VI in the
spectra, similar to those observed in the optical and UV bands. The source was
continuously variable, with a 30 % increase in luminosity in the second half of
the observation. No variability in the warm absorber was detected between the
spectra from the first 170 ks and the second part of the observation. The
velocity structure of the X-ray absorber is consistent with the velocity
structure measured simultaneously in the ultraviolet spectra. We find that the
highest velocity outflow component, at -1040 km/s, becomes increasingly
important for higher ionization parameters. This velocity component spans at
least three orders of magnitude in ionization parameter, producing both highly
ionized X-ray absorption lines (Mg XII, Si XIV) as well as UV absorption lines.
A similar conclusion is very probable for the other four velocity components.
Based upon our observations, we argue that the warm absorber probably does not
manifest itself in the form of photoionized clumps in pressure equilibrium with
a surrounding wind. Instead, a model with a continuous distribution of column
density versus ionization parameter gives an excellent fit to our data. From
the shape of this distribution and the assumption that the mass loss through
the wind should be smaller than the accretion rate onto the black hole, we
derive upper limits to the solid angle as small as 10^{-4} sr. From this we
argue that the outflow occurs in density-stratified streamers. The density
stratification across the stream then produces the wide range of ionization
parameter observed in this source. Abridged.Comment: 21 pages, 12 figures accepted for publication in A&
Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics
The two subunits that make up the ribosome have both distinct and cooperative functions. The 30S ribosomal subunit binds messenger RNA (mRNA) and is involved in the selection of cognate transfer RNA (tRNA) by monitoring codon–anticodon base-pairing during the decoding process. The 50S subunit catalyzes peptide-bond formation. Both subunits work in concert to move tRNAs and mRNAs relative to the ribosome in translocation, and both are the target of a large number of naturally occurring antibiotics. Thus, useful information about the mechanism of translation can be gleaned from structures of both individual subunits and the intact ribosome. In this paper, we describe our work on the determination of the atomic structure of the 30S ribosomal subunit and its complexes with RNA ligands, antibiotics, and initiation factor IF1. The results provide structural insights into how the ribosome recognizes cognate tRNA and discriminates against near-cognate tRNA. They also provide a structural basis for understanding the action of various antibiotics that target the 30S subunit
Enhanced Warm H_2 Emission in the Compact Group Mid-infrared "Green Valley"
We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H_2 emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies (~20%), with 8 galaxies having extreme values of L(H_2 S(0)-S(3))/L(7.7 μm polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanical energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H_2 emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H_2-enhanced galaxies lie in the optical "green valley" between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H2-enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence
Multi-phase gas interactions on subarcsec scales in the shocked IGM of Stephan's Quintet with JWST and ALMA
We combine JWST and HST imaging with ALMA~CO(2-1) spectroscopy to study the
highly turbulent multi-phase intergalactic medium (IGM) in Stephan's Quintet on
25-150 pc scales. Previous Spitzer observations revealed luminous H line
cooling across a 45 kpc-long filament, created by a giant shock-wave, following
the collision with an intruder galaxy NGC~7318b. We demonstrate that the
MIRI/F1000W/F770W filters are dominated by 0-0~S(3)~H and a combination of
PAH and 0-0~S(5)~H emission. They reveal the dissipation of kinetic energy
as massive clouds experience collisions, interactions and likely
destruction/re-cycling within different phases of the IGM. In one kpc-scaled
structure, warm H formed a triangular-shaped head and tail of compressed
and stripped gas behind a narrow shell of cold H. In another region, two
cold molecular clumps with very different velocities are connected by an
arrow-shaped stream of warm, probably shocked, H suggesting a cloud-cloud
collision is occurring. In both regions, a high warm-to-cold molecular gas
fraction indicates that the cold clouds are being disrupted and converted into
warm gas. We also map gas associated with an apparently forming dwarf galaxy.
We suggest that the primary mechanism for exciting strong mid-IR H lines
throughout Stephan's Quintet is through a fog of warm gas created by the
shattering of denser cold molecular clouds and mixing/recycling in the
post-shocked gas. A full picture of the diverse kinematics and excitation of
the warm H will require future JWST mid-IR spectroscopy. The current
observations reveal the rich variety of ways that different gas phases can
interact with one another.Comment: Accepted for Publications to ApJ April 10 202
Black Hole Astrophysics in AdS Braneworlds
We consider astrophysics of large black holes localized on the brane in the
infinite Randall-Sundrum model. Using their description in terms of a conformal
field theory (CFT) coupled to gravity, deduced in Ref. [1], we show that they
undergo a period of rapid decay via Hawking radiation of CFT modes. For
example, a black hole of mass would shed most of its
mass in years if the AdS radius is mm,
currently the upper bound from table-top experiments. Since this is within the
mass range of X-ray binary systems containing a black hole, the evaporation
enhanced by the hidden sector CFT modes could cause the disappearance of X-ray
sources on the sky. This would be a striking signature of RS2 with a large AdS
radius. Alternatively, for shorter AdS radii, the evaporation would be slower.
In such cases, the persistence of X-ray binaries with black holes already
implies an upper bound on the AdS radius of L \la 10^{-2} mm, an order of
magnitude better than the bounds from table-top experiments. The observation of
primordial black holes with a mass in the MACHO range and an age comparable to the age of the universe would further
strengthen the bound on the AdS radius to L \la {\rm few} \times 10^{-6} mm.Comment: 14 pages, latex, no figures v2: added reference
Powerful H_2 Line Cooling in Stephan's Quintet. I. Mapping the Significant Cooling Pathways in Group-wide Shocks
We present results from the mid-infrared spectral mapping of Stephan's Quintet using the Spitzer Space Telescope. A 1000 km s^(-1) collision (t_(col) = 5 × 10^6 yr) has produced a group-wide shock, and for the first time the large-scale distribution of warm molecular hydrogen emission is revealed, as well as its close association with known shock structures. In the main shock region alone we find 5.0 × 10^8 M_☉ of warm H_2 spread over ~480 kpc^2 and additionally report the discovery of a second major shock-excited H_2 feature, likely a remnant of previous tidal interactions. This brings the total H2 line luminosity of the group in excess of 10^(42) erg s^(-1). In the main shock, the H_2 line luminosity exceeds, by a factor of 3, the X-ray luminosity from the hot shocked gas, confirming that the H_2-cooling pathway dominates over the X-ray. [Si II]34.82 μm emission, detected at a luminosity of 1/10th of that of the H_2, appears to trace the group-wide shock closely, and in addition, we detect weak [Fe II]25.99 μm emission from the most X-ray luminous part of the shock. Comparison with shock models reveals that this emission is consistent with regions of fast shocks (100 km s^(-1) < V_s < 300 km s^(-1)) experiencing depletion of iron and silicon onto dust grains. Star formation in the shock (as traced via ionic lines, polycyclic aromatic hydrocarbon and dust emission) appears in the intruder galaxy, but most strikingly at either end of the radio shock. The shock ridge itself shows little star formation, consistent with a model in which the tremendous H_2 power is driven by turbulent energy transfer from motions in a post-shocked layer which suppresses star formation. The significance of the molecular hydrogen lines over other measured sources of cooling in fast galaxy-scale shocks may have crucial implications for the cooling of gas in the assembly of the first galaxies
- …