1,451 research outputs found

    Ultraluminous Star-forming Galaxies and Extremely Luminous Warm Molecular Hydrogen Emission at z = 2.16 in the PKS 1138–26 Radio Galaxy Protocluster

    Get PDF
    A deep Spitzer Infrared Spectrograph map of the PKS 1138–26 galaxy protocluster reveals ultraluminous polycyclic aromatic hydrocarbon (PAH) emission from obscured star formation in three protocluster galaxies, including Hα-emitter (HAE) 229, HAE 131, and the central Spiderweb Galaxy. Star formation rates of ~500-1100 M_☉ yr^(–1) are estimated from the 7.7 μm PAH feature. At such prodigious formation rates, the galaxy stellar masses will double in 0.6-1.1 Gyr. We are viewing the peak epoch of star formation for these protocluster galaxies. However, it appears that extinction of Hα is much greater (up to a factor of 40) in the two ULIRG HAEs compared to the Spiderweb. This may be attributed to different spatial distributions of star formation-nuclear star formation in the HAEs versus extended star formation in accreting satellite galaxies in the Spiderweb. We find extremely luminous mid-IR rotational line emission from warm molecular hydrogen in the Spiderweb Galaxy, with L(H_2 0-0 S(3)) = 1.4 × 10^(44) erg s^(–1) (3.7 × 10^(10) L_☉), ~20 times more luminous than any previously known H2 emission galaxy (MOHEG). Depending on the temperature, this corresponds to a very large mass of >9 × 10^(6)-2 × 10^9 M_☉ of T > 300 K molecular gas, which may be heated by the PKS 1138–26 radio jet, acting to quench nuclear star formation. There is >8 times more warm H_2 at these temperatures in the Spiderweb than what has been seen in low-redshift (z < 0.2) radio galaxies, indicating that the Spiderweb may have a larger reservoir of molecular gas than more evolved radio galaxies. This is the highest redshift galaxy yet in which warm molecular hydrogen has been directly detected

    Observations and modeling of the dust emission from the H_2-bright galaxy-wide shock in Stephan's Quintet

    Get PDF
    Context. Spitzer Space Telescope observations have detected powerful mid-infrared (mid-IR) H_2 rotational line emission from the X-ray emitting large-scale shock (~15 × 35 kpc^2) associated with a galaxy collision in Stephan's Quintet (SQ). Because H_2 forms on dust grains, the presence of H_2 is physically linked to the survival of dust, and we expect some dust emission to originate in the molecular gas. Aims. To test this interpretation, IR observations and dust modeling are used to identify and characterize the thermal dust emission from the shocked molecular gas. Methods. The spatial distribution of the IR emission allows us to isolate the faint PAH and dust continuum emission associated with the molecular gas in the SQ shock. We model the spectral energy distribution (SED) of this emission, and fit it to Spitzer observations. The radiation field is determined with GALEX UV, HST V-band, and ground-based near-IR observations. We consider two limiting cases for the structure of the H_2 gas: it is either diffuse and penetrated by UV radiation, or fragmented into clouds that are optically thick to UV. Results. Faint PAH and dust continuum emission are detected in the SQ shock, outside star-forming regions. The 12/24 μm flux ratio in the shock is remarkably close to that of the diffuse Galactic interstellar medium, leading to a Galactic PAH/VSG abundance ratio. However, the properties of the shock inferred from the PAH emission spectrum differ from those of the Galaxy, which may be indicative of an enhanced fraction of large and neutrals PAHs. In both models (diffuse or clumpy H_2 gas), the IR SED is consistent with the expected emission from dust associated with the warm (> 150 K) H_2 gas, heated by a UV radiation field of intensity comparable to that of the solar neighborhood. This is in agreement with GALEX UV observations that show that the intensity of the radiation field in the shock is GUV = 1.4±0.2 [Habing units]. Conclusions. The presence of PAHs and dust grains in the high-speed (~1000 km s^(-1)) galaxy collision suggests that dust survives. We propose that the dust that survived destruction was in pre-shock gas at densites higher than a few 0.1 cm^(-3), which was not shocked at velocities larger than ~200 km s^(-1). Our model assumes a Galactic dust-to-gas mass ratio and size distribution, and current data do not allow us to identify any significant deviations of the abundances and size distribution of dust grains from those of the Galaxy. Our model calculations show that far-IR Herschel observations will help in constraining the structure of the molecular gas, and the dust size distribution, and thereby to look for signatures of dust processing in the SQ shock

    Space Station CMIF extended duration metabolic control test

    Get PDF
    The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included

    High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei

    Get PDF
    We present relations of the black hole mass and the optical luminosity with the velocity dispersion and the luminosity of the [Ne V] and the [O IV] high-ionization lines in the mid-infrared (MIR) for 28 reverberation-mapped active galactic nuclei. We used high-resolution Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer data to fit the profiles of these MIR emission lines that originate from the narrow-line region of the nucleus. We find that the lines are often resolved and that the velocity dispersion of [Ne V] and [O IV] follows a relation similar to that between the black hole mass and the bulge stellar velocity dispersion found for local galaxies. The luminosity of the [Ne V] and the [O IV] lines in these sources is correlated with that of the optical 5100A continuum and with the black hole mass. Our results provide a means to derive black hole properties in various types of active galactic nuclei, including highly obscured systems.Comment: accepted for publication in ApJ

    A Spitzer Unbiased Ultradeep Spectroscopic Survey

    Get PDF
    We carried out an unbiased, spectroscopic survey using the low-resolution module of the infrared spectrograph (IRS) on board Spitzer targeting two 2.6 square arcminute regions in the GOODS-North field. IRS was used in spectral mapping mode with 5 hours of effective integration time per pixel. One region was covered between 14 and 21 microns and the other between 20 and 35 microns. We extracted spectra for 45 sources. About 84% of the sources have reported detections by GOODS at 24 microns, with a median F_nu(24um) ~ 100 uJy. All but one source are detected in all four IRAC bands, 3.6 to 8 microns. We use a new cross-correlation technique to measure redshifts and estimate IRS spectral types; this was successful for ~60% of the spectra. Fourteen sources show significant PAH emission, four mostly SiO absorption, eight present mixed spectral signatures (low PAH and/or SiO) and two show a single line in emission. For the remaining 17, no spectral features were detected. Redshifts range from z ~ 0.2 to z ~ 2.2, with a median of 1. IR Luminosities are roughly estimated from 24 microns flux densities, and have median values of 2.2 x 10^{11} L_{\odot} and 7.5 x 10^{11} L_{\odot} at z ~ 1 and z ~ 2 respectively. This sample has fewer AGN than previous faint samples observed with IRS, which we attribute to the fainter luminosities reached here.Comment: Published in Ap

    Detection of Powerful Mid-IR H_2 Emission in the Bridge between the Taffy Galaxies

    Get PDF
    We report the detection of strong, resolved emission from warm H_2 in the Taffy galaxies and bridge. Relative to the continuum and faint polyclic aromatic hydrocarbon (PAH) emission, the H_2 emission is the strongest in the connecting bridge, approaching L(H_2)/L(PAH 8 μm) = 0.1 between the two galaxies, where the purely rotational lines of H_2 dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephan's Quintet (SQ). The surface brightness in the 0-0 S(0) and S(1) H_2 lines in the bridge is more than twice that observed at the center of the SQ shock. We observe a warm H2 mass of 4.2 × 10^8 M_☉ in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of ~5 × 10^6 M_☉ kpc^(–2) and typical excitation temperatures of 150-175 K. H_2 emission is also seen in the galaxy disks, although there the emission is more consistent with normal star-forming galaxies. We investigate several possible heating mechanisms for the bridge gas but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H_2 is short (~5000 yr), shocks must be permeating the molecular gas in the bridge region in order to continue heating the H_2

    Energetics of the molecular gas in the H_2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    Get PDF
    We present a detailed analysis of the gas conditions in the H_2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M_⊙ yr^(−1)) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~ 10−50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H_2 line emission is factors 10−100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~−1800 km s^(−1) and a mass outflow rate of 30−40 M_⊙ yr^(−1), which cannot be explained by star formation. The mechanical power implied by the wind, of order 10^(43) erg s^(−1), is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 10^(7−8) yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H_2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥ 10^(11) M_⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback

    Automation in multi-dimensional gas chromatography

    Get PDF

    The X-ray spectrum of the Seyfert I galaxy Markarian 766: Dusty warm absorber or relativistic emission lines?

    Get PDF
    Competing models for broad spectral features in the soft X-ray spectrum of the Seyfert I galaxy Mrk 766 are tested against data from a 130 ks XMM-Newton observation. A model including relativistically broadened Lyalpha emission lines of O VIII N VII and C VI is a better fit to 0.3-2 keV XMM RGS data than a dusty warm absorber. Moreover, the measured depth of neutral iron absorption lines in the spectrum is inconsistent with the magnitude of the iron edge required to produce the continuum break at 17-18 Angstrom in the dusty warm absorber model. The relativistic emission line model can reproduce the broadband (0.1-12 keV) XMM EPIC data with the addition of a fourth line to represent emission from ionized iron at 6.7 keV and an excess due to reflection at energies above the iron line. The pro le of the 6.7 keV iron line is consistent with that measured for the low-energy lines. There is evidence in the RGS data, at the 3sigma level, of spectral features that vary with source flux. The covering fraction of warm absorber gas is estimated to be 12%. Iron in the warm absorber is found to be overabundant with respect to CNO, compared to solar values
    corecore