352 research outputs found

    A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Get PDF
    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division

    Concept lattices : a tool for primitives selection ?

    Get PDF
    In this paper, we present the problem of noisy images recognition and in particular the stage of primitives selection in a classification process. This selection stage appears after segmentation and statistical describers extraction on documentary images are realized. We describe precisely the use of decision tree in order to harmonize and compare it with another less studied method based on a concept lattice.Dans ce papier, nous présentons la problématique de la reconnaissance d'images détériorées et plus particulièrement l'étape de sélection de primitives au sein d'un traitement de classification supervisée. Cette étape de sélection a lieu après que la segmentation et l'extraction des descripteurs statistiques sur des images documentaires aient été réalisées. Nous exposons en détail l'utilisation d'un arbre de décision, afin de l'harmoniser puis la comparer avec une approche moins étudiée utilisant un treillis de Galois

    Tackling the Mouse‐on‐Mouse Problem in Cochlear Immunofluorescence: A Simple Double‐Blocking Protocol for Immunofluorescent Labeling of Murine Cochlear Sections with Primary Mouse Antibodies

    Get PDF
    The mouse is the most widely used animal model in hearing research. Immunohistochemistry and immunofluorescent staining of murine cochlear sections have, thus, remained a backbone of inner ear research. Since many primary antibodies are raised in mouse, the problem of "mouse-on-mouse" background arises due to the interaction between the anti-mouse secondary antibody and the native mouse immunoglobulins. Here, we describe the pattern of mouse-on-mouse background fluorescence in sections of the postnatal mouse cochlea. Furthermore, we describe a simple double-blocking immunofluorescence protocol to label mouse cochlear cryosections. The protocol contains a conventional blocking step with serum, and an additional blocking step with a commercially available anti-mouse IgG blocking reagent. This blocking technique virtually eliminates the "mouse-on-mouse" background in murine cochlear sections, while adding only a little time to the staining protocol. We provide detailed instructions and practical tips for tissue harvesting, processing, and immunofluorescence-labeling. Further protocol modifications are described, to shorten the duration of the protocol, based on the primary antibody incubation temperature. Finally, we demonstrate examples of immunofluorescence staining performed using different incubation times and various incubation temperatures with a commercially available mouse monoclonal primary antibody

    The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire.

    No full text
    BACKGROUND: Iron is essential for the growth and virulence of many pathogenic enterobacteria, whereas beneficial barrier bacteria, such as lactobacilli, do not require iron. Thus, increasing colonic iron could select gut microbiota for humans that are unfavorable to the host. OBJECTIVE: The objective was to determine the effect of iron fortification on gut microbiota and gut inflammation in African children. DESIGN: In a 6-mo, randomized, double-blind, controlled trial, 6-14-y-old Ivorian children (n = 139) received iron-fortified biscuits, which contained 20 mg Fe/d, 4 times/wk as electrolytic iron or nonfortifoed biscuits. We measured changes in hemoglobin concentrations, inflammation, iron status, helminths, diarrhea, fecal calprotectin concentrations, and microbiota diversity and composition (n = 60) and the prevalence of selected enteropathogens. RESULTS: At baseline, there were greater numbers of fecal enterobacteria than of lactobacilli and bifidobacteria (P < 0.02). Iron fortification was ineffective; there were no differences in iron status, anemia, or hookworm prevalence at 6 mo. The fecal microbiota was modified by iron fortification as shown by a significant increase in profile dissimilarity (P < 0.0001) in the iron group as compared with the control group. There was a significant increase in the number of enterobacteria (P < 0.005) and a decrease in lactobacilli (P < 0.0001) in the iron group after 6 mo. In the iron group, there was an increase in the mean fecal calprotectin concentration (P < 0.01), which is a marker of gut inflammation, that correlated with the increase in fecal enterobacteria (P < 0.05). CONCLUSIONS: Anemic African children carry an unfavorable ratio of fecal enterobacteria to bifidobacteria and lactobacilli, which is increased by iron fortification. Thus, iron fortification in this population produces a potentially more pathogenic gut microbiota profile, and this profile is associated with increased gut inflammation. This trial was registered at controlled-trials.com as ISRCTN21782274

    The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS: We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION: Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus

    Reduced Body Weight and Increased Energy Expenditure in Transgenic Mice Over-Expressing Soluble Leptin Receptor

    Get PDF
    studies have shown that OBRe expression is inversely correlated to body weight and leptin levels. However, it is not clear whether OBRe plays an active role, either in collaboration with leptin or independently, in the maintenance of body weight.To investigate the function of OBRe in the regulation of energy homeostasis, we generated transgenic mice that express OBRe under the control of human serum amyloid P (hSAP) component gene promoter. The transgene led to approximately doubling of OBRe in circulation in the transgenic mice than in wild type control mice. Transgenic mice exhibited lower body weight at 4 weeks of age, and slower rate of weight gain when compared with control mice. Furthermore, transgenic mice had lower body fat content. Indirect calorimetry revealed that transgenic mice had reduced food intake, increased basal metabolic rate, and increased lipid oxidation, which could account for the differences in body weight and body fat content. Transgenic mice also showed higher total circulating leptin, with the majority of it being in the bound form, while the amount of free leptin is comparable between transgenic and control mice.These results are consistent with the role of OBRe as a leptin binding protein in regulating leptin's bioavailability and activity

    The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin

    Get PDF

    The association between baseline persistent pain and weight change in patients attending a specialist weight management service

    Get PDF
    To quantify the influence of baseline pain levels on weight change at one-year follow-up in patients attending a National Health Service specialist weight management programme.We compared one-year follow-up weight (body mass) change between patient sub-groups of none-to-mild, moderate, and severe pain at baseline. A mean sub-group difference in weight change of ≥5kg was considered clinically relevant.Of the 141 complete cases, n = 43 (30.5%) reported none-to-mild pain, n = 44 (31.2%) reported moderate pain, and n = 54 (38.3%) reported severe pain. Covariate-adjusted mean weight loss (95%CI) was similar for those with none-to-mild (8.1kg (4.2 to 12.0kg)) and moderate pain (8.3kg (4.9 to 11.7kg). The mean weight loss of 3.0kg (-0.4 to 6.4kg) for the severe pain group was 5.1kg (-0.6 to 10.7, p = 0.08) lower than the none-to-mild pain group and 5.3kg (0.4 to 10.2kg, p = 0.03) lower than the moderate pain group.Patients with severe pain upon entry to a specialist weight management service in England achieve a smaller mean weight loss at one-year follow-up than those with none-to-moderate pain. The magnitude of the difference in mean weight loss was clinically relevant, highlighting the importance of addressing severe persistent pain in obese patients undertaking weight management programmes

    Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    Get PDF
    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS
    corecore