3,075 research outputs found

    Advancing Cyberinfrastructure to support high resolution water resources modeling (Invited)

    Get PDF
    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics challenges involved with data management and easy-to-use access to high performance computing being tackled in this project

    Energy Spectrum Evolution of a Diffuse Field in Elastic Body Caused by Weak Nonlinearity

    Full text link
    We study the evolution of diffuse elastodynamic spectral energy density under the influence of weak nonlinearity. It is shown that the rate of change of this quantity is given by a convolution of the linear energy at two frequencies. Quantitative estimates are given for sample aluminum and fused silica blocks of experimental interest.Comment: 9 pages, 3 figures; revised for better presentatio

    Evaluation of approaches for identifying population informative markers from high density SNP Chips

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic markers can be used to identify and verify the origin of individuals. Motivation for the inference of ancestry ranges from conservation genetics to forensic analysis. High density assays featuring Single Nucleotide Polymorphism (SNP) markers can be exploited to create a reduced panel containing the most informative markers for these purposes. The objectives of this study were to evaluate methods of marker selection and determine the minimum number of markers from the BovineSNP50 BeadChip required to verify the origin of individuals in European cattle breeds. Delta, Wright's F<sub>ST</sub>, Weir & Cockerham's F<sub>ST </sub>and PCA methods for population differentiation were compared. The level of informativeness of each SNP was estimated from the breed specific allele frequencies. Individual assignment analysis was performed using the ranked informative markers. Stringency levels were applied by log-likelihood ratio to assess the confidence of the assignment test.</p> <p>Results</p> <p>A 95% assignment success rate for the 384 individually genotyped animals was achieved with < 80, < 100, < 140 and < 200 SNP markers (with increasing stringency threshold levels) across all the examined methods for marker selection. No further gain in power of assignment was achieved by sampling in excess of 200 SNP markers. The marker selection method that required the lowest number of SNP markers to verify the animal's breed origin was Wright's F<sub>ST </sub>(60 to 140 SNPs depending on the chosen degree of confidence). Certain breeds required fewer markers (< 100) to achieve 100% assignment success. In contrast, closely related breeds require more markers (~200) to achieve > 95% assignment success. The power of assignment success, and therefore the number of SNP markers required, is dependent on the levels of genetic heterogeneity and pool of samples considered.</p> <p>Conclusions</p> <p>While all SNP selection methods produced marker panels capable of breed identification, the power of assignment varied markedly among analysis methods. Thus, with effective exploration of available high density genetic markers, a diagnostic panel of highly informative markers can be produced.</p

    Intergenerational change and familial aggregation of body mass index

    Get PDF
    The relationship between parental BMI and that of their adult offspring, when increased adiposity can become a clinical issue, is unknown. We investigated the intergenerational change in body mass index (BMI) distribution, and examined the sex-specific relationship between parental and adult offspring BMI. Intergenerational change in the distribution of adjusted BMI in 1,443 complete families (both parents and at least one offspring) with 2,286 offspring (1,263 daughters and 1,023 sons) from the west of Scotland, UK, was investigated using quantile regression. Familial correlations were estimated from linear mixed effects regression models. The distribution of BMI showed little intergenerational change in the normal range (\25 kg/m2), decreasing overweightness (25– \30 kg/m2) and increasing obesity (C30 kg/m2). Median BMI was static across generations in males and decreased in females by 0.4 (95% CI: 0.0, 0.7) kg/m2; the 95th percentileincreased by 2.2 (1.1, 3.2) kg/m2 in males and 2.7 (1.4, 3.9) kg/m2 in females. Mothers’ BMI was more strongly associated with daughters’ BMI than was fathers’ (correlation coefficient (95% CI): mothers 0.31 (0.27, 0.36), fathers 0.19 (0.14, 0.25); P = 0.001). Mothers’ and fathers’ BMI were equally correlated with sons’ BMI (correlation coefficient: mothers 0.28 (0.22, 0.33), fathers 0.27 (0.22, 0.33). The increase in BMI between generations was concentrated at the upper end of the distribution. This, alongside the strong parent-offspring correlation, suggests that the increase in BMI is disproportionally greater among offspring of heavier parents. Familial influences on BMI among middle-aged women appear significantly stronger from mothers than father

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming

    Predicting the public health benefit of vaccinating cattle against Escherichia coli O157

    Get PDF
    Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle–human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human–animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases

    Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth

    Get PDF
    Background: A major challenge in sheep farming during the grazing season along the coast of south-western Norway is tick-borne fever (TBF) caused by the bacteria Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. Methods: A study was carried out in 2007 and 2008 to examine the prevalence of A. phagocytophilum infection and effect on weaning weight in lambs. The study included 1208 lambs from farms in Sunndal Ram Circle in Møre and Romsdal County in Mid-Norway, where ticks are frequently observed. All lambs were blood sampled and serum was analyzed by an indirect fluorescent antibody assay (IFA) to determine an antibody status (positive or negative) to A. phagocytophilum infection. Weight and weight gain and possible effect of infection were analyzed using ANOVA and the MIXED procedure in SAS. Results: The overall prevalence of infection with A. phagocytophilum was 55%. A lower weaning weight of 3% (1.34 kg, p < 0.01) was estimated in lambs seropositive to an A. phagocytophilum infection compared to seronegative lambs at an average age of 137 days. Conclusions: The results show that A. phagocytophilum infection has an effect on lamb weight gain. The study also support previous findings that A. phagocytophilum infection is widespread in areas where ticks are prevalent, even in flocks treated prophylactic with acaricides

    First Results from the CHARA Array. II. A Description of the Instrument

    Full text link
    The CHARA Array is a six 1-m telescope optical/IR interferometric array located on Mount Wilson California, designed and built by the Center for High Angular Resolution Astronomy of Georgia State University. In this paper we describe the main elements of the Array hardware and software control systems as well as the data reduction methods currently being used. Our plans for upgrades in the near future are also described

    Process evaluation for complex interventions in primary care: understanding trials using the normalization process model

    Get PDF
    Background: the Normalization Process Model is a conceptual tool intended to assist in understanding the factors that affect implementation processes in clinical trials and other evaluations of complex interventions. It focuses on the ways that the implementation of complex interventions is shaped by problems of workability and integration.Method: in this paper the model is applied to two different complex trials: (i) the delivery of problem solving therapies for psychosocial distress, and (ii) the delivery of nurse-led clinics for heart failure treatment in primary care.Results: application of the model shows how process evaluations need to focus on more than the immediate contexts in which trial outcomes are generated. Problems relating to intervention workability and integration also need to be understood. The model may be used effectively to explain the implementation process in trials of complex interventions.Conclusion: the model invites evaluators to attend equally to considering how a complex intervention interacts with existing patterns of service organization, professional practice, and professional-patient interaction. The justification for this may be found in the abundance of reports of clinical effectiveness for interventions that have little hope of being implemented in real healthcare setting
    corecore