22 research outputs found

    Disc light variability in the FUor star V646 Puppis as observed by TESS and from the ground

    Get PDF
    Context. We investigate small-scale light variations in V646 Pup occurring on timescales of days, weeks, and years. Aims: We aim to investigate whether this variability is similar to that observed in FU Ori. Methods: We observed V646 Pup on six occasions at the SAAO and CTIO between 2013 and 2018 with Johnson and Sloan filters, typically using a one-day cadence maintained for two to four weeks. We also utilised the public-domain 1512-day-long ASAS-SN light curve and TESS photometry obtained in 2019 over 24.1 days with a 30 min cadence. New SAAO low-resolution spectra assist in updating major disc parameters, while the archival high-resolution Keck spectra are used to search for temporal changes in the disc rotational profiles. Results: The ground-based observations confirm the constantly decreasing brightness of V646 Pup at the rate of 0.018 mag yr-1. Precise i-band sensitive TESS data show that the slight, 0.005-0.01 mag, light variations imposed on this general trend do consist of a few independent wave trains of an apparently time-coherent nature. Assuming that this is typical situation, based on an analysis of colour-magnitude diagrams obtained for earlier epochs, we were able to make a preliminarily inference that the bulk of the light changes observed could be due to the rotation of disc photosphere inhomogeneities, arising between 10-12 R☉ from the star. We do not exclude the possibility that these inhomogeneities could also manifest themselves in the rotational profiles of the disc, as obtained from the high-resolution spectra. Assuming Keplerian rotation of these inhomogeneities, we give a preliminary determination of the stellar mass at 0.7-0.9 M☉. Conclusions: Over certain weeks, at least, V646 Pup has shown time-coherent light variability pattern(s) that could be explained by the rotation of an inhomogeneous disc photosphere. These preliminary results are similar to those better established for FU Ori, which suggests a common driving mechanism(s). Tables A.1-A.8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/644/A13

    Optical variability of eight FRII-type quasars with 13 yr photometric light curves

    Get PDF
    We characterize the optical variability properties of eight lobe-dominated radio quasars (QSOs): B2 0709+37, FBQS J095206.3+235245, PG 1004+130, [HB89] 1156+631, [HB89] 1425+267, [HB89] 1503+691, [HB89] 1721+343, and 4C +74.26, systematically monitored for a duration of 13 yr since 2009. The quasars are radio-loud objects with extended radio lobes that indicate their orientation close to the sky plane. Five of the eight QSOs are classified as giant radio quasars. All quasars showed variability during our monitoring, with magnitude variations between 0.3 and 1 mag for the least variable and the most variable QSOs, respectively. We performed both structure function (SF) analysis and power spectral density (PSD) analysis for the variability characterization and search for characteristic timescales and periodicities. As a result of our analysis, we obtained relatively steep SF slopes (α ranging from 0.49 to 0.75) that are consistent with the derived PSD slopes (∼2–3). All the PSDs show a good fit to single power-law forms, indicating a red-noise character of variability between timescales of ∼13 yr and weeks. We did not measure reliable characteristic timescales of variability from the SF analysis, which indicates that the duration of the gathered data is too short to reveal them. The absence of bends in the PSDs (change of slope from ≥1 to ∼0) on longer timescales indicates that optical variations are most likely caused by thermal instabilities in the accretion disk

    Multiwavelength variability of the radio quasar J2042+7508

    Get PDF
    In this paper, we present our results of study on the long term multiwavelength variability properties of the quasar J2042+7508 (4C +74.26) – a giant radio source located at the redshift of 0.104. This source exhibits interesting emission and structural properties when observed in various wavelengths, including X-ray, optical and radio frequencies. Therefore, exploring these properties through multifrequency variability studies presents a great importance to our understanding of the evolution of quasars and radio-loud unification schemes. We found a trend of anticorrelation with time lag of about three months between optical and radio light curves. A weak correlation with a longer time lag of about 230 days might also exist. Using the structure function method, applied to our six years long, optical data, we arrived at a conclusion that the quasar variability with amplitude of about 0.3 magnitude, is likely caused by an accretion disk instability

    Optical variability of eight FRII-type quasars with 13-yr photometric light curves

    Get PDF
    We characterize the optical variability properties of eight lobe-dominated radio quasars (QSOs): B2 0709++37, FBQS J095206.3++235245, PG 1004++130, [HB89] 1156++631, [HB89] 1425++267, [HB89] 1503++691, [HB89] 1721++343, 4C ++74.26, systematically monitored for a duration of 13 years since 2009. The quasars are radio-loud objects with extended radio lobes that indicate their orientation close to the sky plane. Five of the eight QSOs are classified as giant radio quasars. All quasars showed variability during our monitoring, with magnitude variations between 0.3 and 1 mag for the least variable and the most variable QSO, respectively. We performed both structure function (SF) analysis and power spectrum density (PSD) analysis for the variability characterization and search for characteristic timescales and periodicities. As a result of our analysis, we obtained relatively steep SF slopes (α\alpha ranging from 0.49 to 0.75) that are consistent with the derived PSD slopes (\sim2--3). All the PSDs show a good fit to single power law forms, indicating a red-noise character of variability between \sim13 years and weeks timescales. We did not measure reliable characteristic timescales of variability from the SF analysis which indicates that the duration of the gathered data is too short to reveal them. The absence of bends in the PSDs (change of slope from \geq1 to \sim0) on longer timescales indicates that optical variations are most likely caused by thermal instabilities in the accretion disk.Comment: Accepted for publication in ApJS; 17 pages, 5 figures, 5 table

    Radial Velocity Studies of Close Binary Stars.XIII

    Full text link
    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: EG Cep,V1191 Cyg, V1003 Her, BD+7_3142, V357 Peg, V407 Peg, V1123 Tau, V1128 Tau, HH UMa, and PY Vir. While most of the studied eclipsing systems are contact binaries, EG Cep is a detached or a semi-detached double-lined binary and V1003 Her is a close binary of an uncertain type seen at a very low inclination angle. We discovered two previously unknown triple systems, BD+7_3142 and PY Vir, both with late spectral-type (K2V) binaries. Of interest is the low-mass ratio (q = 0.106) close binary V1191 Cyg showing an extremely fast period increase; the system has a very short period for its spectral type and shows a W-type light curve, a feature rather unexpected for such a low mass-ratio system.Comment: Accepted by AJ. 19 pages including 5 figure

    DDO spectroscopic survey of MOST variable stars

    Full text link
    A spectroscopic support survey of 103 objects observed by the MOST satellite is presented; 96 are variable stars with 83 of them being new MOST variable-star detections or stars with variability types verified and/or modified on the basis of the MOST data. Analysis of 241 medium-resolution spectra using the broadening-functions formalism yielded radial velocities, projected rotational velocities (for 31 targets for which it was possible) and spectral type estimates. Seven new spectroscopic binaries were discovered; orbital solutions are given for two of them (HD73709, and GSC 0814-0323). The visual binary HD46180 was found to be composed of two close binary stars (eclipsing and non-eclipsing one) very probably forming a physical quadruple system.Comment: 2 figures, accepted to MNRAS on October 17, 200

    Radial Velocity Studies of Close Binary Stars.VI

    Full text link
    Radial-velocity measurements and sine-curve fits to the orbital velocity variations are presented for the sixth set of ten close binary systems: SV Cam, EE Cet, KR Com, V410 Cyg, GM Dra, V972 Her, ET Leo, FS Leo, V2388 Oph, II UMa. All systems except FS Leo are double-lined spectroscopic binaries. The type of FS Leo is unknown while SV Cam is a close, detached binary; all remaining systems are contact binaries. Eight binaries (all except SV Cam and V401 Cyg) are the recent photometric discoveries of the Hipparcos satellite project. Five systems, EE Cet, KR Com, V401 Cyg, V2388 Oph, II UMa, are members of visual/spectroscopic triple systems. We were able to observe the close binary system EE Cet separately of its companion, but in the remaining four systems we could separate the spectral components only through the use of the broadening-function approach. Several of the studied systems are prime candidates for combined light and radial-velocity synthesis solutions.Comment: AASTeX5, 5 figures, 2 tables, modified after the AJ revie

    Radial Velocity Studies of Close Binary Stars. XV

    Full text link
    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for the last eight close binary systems analyzed the same way as in the previous papers of this series: QX And, DY Cet, MR Del, HI Dra, DD Mon, V868 Mon, ER Ori, and Y Sex. For another seven systems (TT Cet, AA Cet, CW Lyn, V563 Lyr, CW Sge, LV Vir and MW Vir) phase coverage is insufficient to provide reliable orbits but radial velocities of individual components were measured. Observations of a few complicated systems observed throughout the DDO close-binary program are also presented; among them an especially interesting is the multiple system V857 Her which - in addition to the contact binary - very probably contains one or more sub-dwarf components of much earlier spectral type. All suspected binaries which were found to be most probably pulsating stars are briefly discussed in terms of mean radial velocities and projected rotation velocities (v sin i) as well as spectral type estimates. In two of them, CU CVn and V752 Mon, the broadening functions show a clear presence of non-radial pulsations. The previously missing spectral types for the DDO I paper are given here in addition to such estimates for most of the program stars of this paper.Comment: submitted to A

    Radial Velocity Studies of Close Binary Stars. XI

    Get PDF
    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: DU Boo, ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi and AG Vir. By this contribution, the DDO program has reached the point of 100 published radial velocity orbits. The radial velocities have been determined using an improved fitting technique which uses rotational profiles to approximate individual peaks in broadening functions. Three systems, ET Boo, VW LMi and TV UMi, were found to be quadruple while AG Vir appears to be a spectroscopic triple. ET Boo, a member of a close visual binary with Pvis=113P_{vis} = 113 years, was previously known to be a multiple system, but we show that the second component is actually a close, non-eclipsing binary. The new observations enabled us to determine the spectroscopic orbits of the companion, non-eclipsing pairs in ET Boo and VW LMi. The particularly interesting case is VW LMi, where the period of the mutual revolution of the two spectroscopic binaries is only 355 days. While most of the studied eclipsing pairs are contact binaries, ET Boo is composed of two double-lined detached binaries and HL Dra is single-lined detached or semi-detached system. Five systems of this group were observed spectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-lined binary), V566 Oph, AG Vir, but our new data are of much higher quality than the previous studies.Comment: Accepted by AJ, August 2006, 10 figures, 3 table

    A Multi-Epoch, Multiwavelength Study of the Classical FUor V1515 Cyg Approaching Quiescence

    Get PDF
    Historically, FU Orionis-type stars are low-mass, pre-main-sequence stars. The members of this class experience powerful accretion outbursts and remain in an enhanced accretion state for decades or centuries. V1515 Cyg, a classical FUor, started brightening in the 1940s and reached its peak brightness in the late 1970s. Following a sudden decrease in brightness, it stayed in a minimum state for a few months, then started brightening for several years. We present the results of our ground-based photometric monitoring complemented with optical/near-infrared spectroscopic monitoring. Our light curves show a long-term fading with strong variability on weekly and monthly timescales. The optical spectra show P Cygni profiles and broad blueshifted absorption lines, common properties of FUors. However, V1515 Cyg lacks the P Cygni profile in the Ca II 8498 Å line, a part of the Ca infrared triplet, formed by an outflowing wind, suggesting that the absorbing gas in the wind is optically thin. The newly obtained near-infrared spectrum shows the strengthening of the CO bandhead and the FeH molecular band, indicating that the disk has become cooler since the last spectroscopic observation in 2015. The current luminosity of the accretion disk dropped from the peak value of 138 L ⊙ to about 45 L ⊙, suggesting that the long-term fading is also partly caused by the dropping of the accretion rate
    corecore