15 research outputs found

    Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: The ELAPSE project.

    Get PDF
    BACKGROUND: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent. OBJECTIVES: We examined the association between long-term exposure to low-level air pollution and COPD incidence. METHODS: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 ¾m (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models. RESULTS: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 ¾g/m3 for PM2.5, 1.11 (1.06, 1.16) per 10 ¾g/m3 for NO2, and 1.11 (1.06, 1.15) per 0.5 10-5m-1 for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC. CONCLUSIONS: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant

    Konsentrasjons-responskurver for svevestøv: PM10

    No full text

    Agreement between self-reported and registry-based use of sleep medications and tranquilizers

    No full text
    Purpose The purpose of the present study was to assess the agreement between self‐reported use of sleep medications and tranquilizers and dispensed hypnotics and anxiolytics. Methods Self‐reported medication use was obtained from the population‐based survey Health and Environment in Oslo (HELMILO) (2009‐2010) (n = 13 019). Data on dispensed hypnotics and anxiolytics were obtained from the Norwegian Prescription Database (NorPD). As measures of validity, we calculated sensitivity and specificity using both self‐reports and prescription records as the reference standard. Furthermore, we calculated Cohen's kappa. Current self‐reported medication use was compared with prescription data in time windows of both 100 and 200 days preceding questionnaire completion. Results The highest sensitivity was observed for current sleep medication use in the 100‐day time window (sensitivity = 0.76, 95% confidence interval [CI]: 0.74, 0.79) when using prescription records as the reference standard. Sensitivity was generally lower for tranquilizers compared with sleep medications. Cohen's kappa showed the highest agreement for the 200‐day time window with substantial agreement for sleep medications (kappa = 0.64; 95% CI: 0.62, 0.67) and moderate agreement for tranquilizers (kappa = 0.45; 95% CI: 0.41, 0.48). Conclusions The present study suggests moderate to substantial agreement between self‐reported use of sleep medications and tranquilizers and dispensed drugs in a general adult population. The magnitude of agreement varied according to drug category and time window. Since self‐reported and registry‐based use of these drug classes does not match each other accurately, limitations of each data source should be considered when such medications are applied as the exposure or outcome in epidemiologic studies

    Self-reported traffic-related air pollution and respiratory symptoms among adults in an area with modest levels of traffic

    Get PDF
    Health effects of traffic-related air pollution (TRAP) concentrations in densely populated areas are previously described. However, there is still a lack of knowledge of the health effects of moderate TRAP levels. The aim of the current study, a population-based survey including 16 099 adults (response rate 33%), was to assess the relationship between TRAP estimates and respiratory symptoms in an area with modest levels of traffic; Telemark County, Norway. Respondents reported respiratory symptoms the past 12 months and two TRAP exposure estimates: amount of traffic outside their bedroom window and time spent by foot daily along a moderate to heavy traffic road. Females reported on average more symptoms than males. Significant relationships between traffic outside their bedroom window and number of symptoms were only found among females, with the strongest associations among female occasional smokers (incidence rate ratio [IRR], 1.75, 95% confidence interval (CI) [1.16–2.62] for moderate or heavy traffic compared to no traffic). Significant relationship between time spent daily by foot along a moderate to heavy traffic road and number of symptoms was found among male daily smokers (IRR 1.09, 95% CI [1.04–1.15] per hour increase). Associations between traffic outside bedroom window and each respiratory symptom were found. Significant associations were primarily detected among females, both among smokers and non-smokers. Significant associations between time spent by foot daily along a moderate to heavy traffic road (per hour) and nocturnal dyspnoea (odds ratio (OR) 1.20, 95% CI [1.05–1.38]), nocturnal chest tightness (OR 1.13 [1.00–1.28]) and wheezing (OR 1.14 [1.02–1.29]) were found among daily smokers, primarily men. Overall, we found significant associations between self-reported TRAP exposures and respiratory symptoms. Differences between genders and smoking status were identified. The findings indicate an association between TRAP and respiratory symptoms even in populations exposed to modest levels of TRAP

    A longitudinal study of road traffic noise and body mass index trajectories from birth to 8 years

    No full text
    Background:Being overweight constitutes a health risk, and the proportion of overweight and obese children is increasing. It has been argued that road traffic noise could be linked to adiposity through its influence on sleep and stress. Few studies, to our knowledge, have investigated whether noise and adiposity are associated. Most of them were on adults, and we are not aware of any longitudinal study using repeated measures.Objectives:The present longitudinal study investigated whether road traffic noise exposures in pregnancy (N = 6,963; obs = 22,975) or childhood (N = 6,403; obs = 14,585) were associated with body mass index (BMI) trajectories in children.Methods:We obtained information on BMI and covariates from questionnaires used in the Norwegian Mother and Child Cohort Study, Statistics Norway, and Medical Birth Registry of Norway. We modeled road traffic noise for the most exposed façade of children’s present and historical addresses at 6 time points from pregnancy to age 8. We investigated effects on BMI trajectories using repeated measures and linear mixed models.Results:The results indicated that BMI curves depended on road traffic noise exposure during pregnancy, but not on exposure during childhood. Children in the highest decile of traffic noise exposure had increased BMI, with 0.35 kg/m2 more than children in the lowest decile, from birth to age 8 years.Conclusions:The results indicate that exposure to road traffic noise during pregnancy may be associated with children’s BMI trajectories. Future studies should investigate this further, using anthropometric measures such as waist-hip ratio and skinfold thickness, in addition to BMI
    corecore