15 research outputs found

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Distribution of Serotypes, Genotypes, and Resistance Determinants among Macrolide-Resistant Streptococcus pneumoniae Isolates â–ż

    No full text
    Macrolide resistance in Streptococcus pneumoniae has emerged as an important clinical problem worldwide over the past decade. The aim of this study was to analyze the phenotypes (serotype and antibiotic susceptibility), genotypes (multilocus sequence type [MLST] and antibiotic resistance gene/transposon profiles) among the 31% (102/328) of invasive isolates from children in New South Wales, Australia, in 2005 that were resistant to erythromycin. Three serotypes—19F (47 isolates [46%]), 14 (27 isolates [26%]), and 6B (12 isolates [12%])—accounted for 86 (84%) of these 102 isolates. Seventy four (73%) isolates had the macrolide-lincosamide-streptogramin B (MLSB) resistance phenotype and carried Tn916 transposons (most commonly Tn6002); of these, 73 (99%) contained the erythromycin ribosomal methylase gene [erm(B)], 34 (47%) also carried the macrolide efflux gene [mef(E)], and 41 (55%) belonged to serotype 19F. Of 28 (27%) isolates with the M phenotype, 22 (79%) carried mef(A), including 16 (57%) belonging to serotype 14, and only six (19%) carried Tn916 transposons. Most (84%) isolates which contained mef also contained one of the msr(A) homologues, mel or msr(D); 38 of 40 (95%) isolates with mef(E) (on mega) carried mel, and of 28 (39%) isolates with mef(A), 10 (39%) carried mel and another 11(39%) carried msr(D), on Tn1207.1. Two predominant macrolide-resistant S. pneumoniae clonal clusters (CCs) were identified in this population. CC-271 contained 44% of isolates, most of which belonged to serotype 19F, had the MLSB phenotype, were multidrug resistant, and carried transposons of the Tn916 family; CC-15 contained 23% of isolates, most of which were serotype 14, had the M phenotype, and carried mef(A) on Tn1207.1. Erythromycin resistance among S. pneumoniae isolates in New South Wales is mainly due to the dissemination of multidrug-resistant S. pneumoniae strains or horizontal spread of the Tn916 family of transposons

    Simple, Accurate, Serotype-Specific PCR Assay To Differentiate Streptococcus pneumoniae Serotypes 6A, 6B, and 6C▿ †

    No full text
    In this study, we developed a simple, reliable, serotype-specific PCR method to differentiate Streptococcus pneumoniae serotypes 6A, 6B, and 6C. It was more efficient and practical than the assays currently being used to identify serotypes 6A, 6B, and 6C. Of 120 selected serogroup 6 isolates from subjects with invasive (n = 101) and noninvasive (n = 19) pneumococcal disease, most of which were collected after 2003 in New South Wales, 45 had been identified as 6A and 75 had been identified as 6B by the Quellung reaction. PCR analysis confirmed the results for serotype 6B isolates and identified two different subtypes. Fourteen of 45 isolates that had been identified as serotype 6A actually belonged to serotype 6C

    Molecular epidemiology of Streptococcus pneumoniae serogroup 6 isolates from Fijian children, including newly identified serotypes 6C and 6D.

    Get PDF
    Multilocus sequence typing (MLST) was applied to all unique serotype 6C and 6D isolates and a random selection of serotype 6B and 6A isolates from nasopharyngeal swabs from Fijian children enrolled in a recent vaccine trial. The results suggest that Fijian serotype 6D has arisen independently from both serotypes 6A/C and 6B
    corecore