15 research outputs found

    PDX-1 is Required for Posterior Poregut Patterning and Differentiation of the Pancreas and Duodenum

    Get PDF
    The Xenopus homeobox gene, XlHbox8, has been proposed to be involved in endodermal differentiation, specifically in pancreatic and duodenal development (Wright et al., 1988. Development 105, 787-794). To test this hypothesis directly, the mouse homolog, pdx-1, was cloned and gene targeting was used to produce two separate null alleles. In one, the second pdx-1 exon, including homeobox sequences, was replaced by a neomycin resistance cassette. In the second, a lacZ reporter was fused in-frame with the N-terminus of PDX-1, replacing most of the homeodomain. Neonatal pdx−1 −/−pdx{-}1\ {-}/{-} mice for both mutations are apancreatic, in confirmation of the report by Jonsson et al. (Jonsson. J., Carlsson, L., Edlund, T. and Edlund, H. 1994. Nature 371, 606-609.). However, the data presented in this dissertation show that the pancreatic buds form in homozygous mutants, with the dorsal bud undergoing limited proliferation and outgrowth to form a small, irregularly branched, ductular tree. No insulin or amylase-positive cells are found in these outgrowths, but glucagon-expressing GLUT2-positive cells are found. The rostral duodenum suffers a local absence of the normal columnar epithelial lining, villi, and Brunner\u27s glands, which are replaced by a GLUT2-positive cuboidal epithelium resembling the bile duct lining. The abundance of enteroendocrine cells in the rostral duodenal villi is greatly reduced in pdx-1 −/−1\ {-}/{-} embryos. The PDX-1/β\beta-galactosidase fusion allele is expressed in the pancreatic and duodenal cells in the absence of functional PDX-1, and the majority of these cells express PDX-1/β\beta-galactosidase fusion protein into perinatal stages without changes in the boundaries or levels of expression. These results are discussed in terms of a role for pdx-1 in posterior foregut patterning, specifically in the differentiation of the pancreas and rostral duodenum

    The Development of Xenopus tropicalis Transgenic Lines and their Use in Studying Lens Developmental Timing in Living Embryos

    Get PDF
    The generation of reporter lines for observing lens differentiation in vivo demonstrates a new strategy for embryological manipulation and allows us to address a long-standing question concerning the timing of the onset of differentiation. Xenopus tropicalis was used to make GFP reporter lines with &#;1-crystallin promoter elements directing GFP expression within the early lens. X. tropicalis is a close relative of X. laevis that shares the same ease of tissue manipulation with the added benefits of a diploid genome and faster life cycle. The efficiency of the Xenopus transgenic technique was improved in order to generate greater numbers of normal, adult transgenic animals and to facilitate in vivo analysis of the crystallin promoter. This transgene is transmitted through the germline, providing an accurate and consistent way to monitor lens differentiation. This line permitted us to distinguish models for how the onset of differentiation is controlled: by a process intrinsic to differentiating tissue or one dependent on external cues. This experiment would not have been feasible without the sensitivity and accuracy provided by the in vivo reporter. We find that, in specified lens ectoderm transplanted from neural tube stage donors to younger neural-plate-stage hosts, the onset of differentiation, as measured by expression of the crystallin/GFP transgene, is delayed by an average of 4.4 hours. When specified lens ectoderm is explanted into culture, the delay was an average of 16.3 hours relative to control embryos. These data suggest that the onset of differentiation in specified ectoderm can be altered by the environment and imply that this onset is normally controlled by external cues rather than by an intrinsic mechanism

    pdx-1 function is specifically required in embryonic β cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis

    Get PDF
    AbstractThe pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult β cells revealed that this gene is required for maintenance of mature β cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic β cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin+ cells and an increase in both glucagon+ and somatostatin+ cells. Lineage tracing revealed that excess glucagon+ and somatostatin+ cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the β cells generated at late gestation, and that one function of normal β cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types

    PDX-1 is required for pancreatic out-growth and differentiation of the rostral duodenum

    Get PDF
    It has been proposed that the Xenopus homeobox gene, XlHbox8, is involved in endodermal differentiation during pancreatic and duodenal development (Wright, C. V. E., Schnegelsberg, P. and De Robertis, E. M. (1988). Development 105, 787-794). To test this hypothesis directly, gene targeting was used to make two different null mutations in the mouse XlHbox8 homolog, pdx-1. In the first, the second pdx-1 exon, including the homeobox, was replaced by a neomycin resistance cassette. In the second, a lacZ reporter was fused in-frame with the N terminus of PDX-1, replacing most of the homeodomain. Neonatal pdx-1-/- mice are apancreatic, in confirmation of previous reports (Jonsson, J., Carlsson, L., Edlund, T. and Edlund, H. (1994). Nature 371, 606-609). However, the pancreatic buds do form in homozygous mutants, and the dorsal bud undergoes limited proliferation and outgrowth to form a small, irregularly branched, ductular tree. This outgrowth does not contain insulin or amylase-positive cells, but glucagon-expressing cells are found. The rostral duodenum shows a local absence of the normal columnar epithelial lining, villi, and Brunner’s glands, which are replaced by a GLUT2-positive cuboidal epithelium resembling the bile duct lining. Just distal of the abnormal epithelium, the numbers of enteroendocrine cells in the villi are greatly reduced. The PDX-1/b-galactosidase fusion allele is expressed in pancreatic and duodenal cells in the absence of functional PDX-1, with expression continuing into perinatal stages with similar boundaries and expression levels. These results offer additional insight into the role of pdx-1 in the determination and differentiation of the posterior foregut, particularly regarding the proliferation and differentiation of the pancreatic progenitors

    Hepatocyte Nuclear Factor 3beta is Involved in Pancreatic Beta-Cell-Specific Transcription of the PDX-1 Gene

    Get PDF
    The mammalian homeobox gene pdx-1 is expressed in pluripotent precursor cells in the dorsal and ventral pancreatic bud and duodenal endoderm, which will produce the pancreas and the rostral duodenum. In the adult, pdx-1 is expressed principally within insulin-secreting pancreatic islet b cells and cells of the duodenal epithelium. Our objective in this study was to localize sequences within the mouse pdx-1 gene mediating selective expression within the islet. Studies of transgenic mice in which a genomic fragment of the mouse pdx-1 gene from kb 24.5 to 18.2 was used to drive a b-galactosidase reporter showed that the control sequences sufficient for appropriate developmental and adult specific expression were contained within this region. Three nuclease-hypersensitive sites, located between bp 22560 and 21880 (site 1), bp 21330 and 2800 (site 2), and bp 2260 and 1180 (site 3), were identified within the 5*-flanking region of the endogenous pdx-1 gene. Pancreatic b-cell-specific expression was shown to be controlled by sequences within site 1 from an analysis of the expression pattern of various pdx-1–herpes simplex virus thymidine kinase promoter expression constructs in transfected b-cell and non-b-cell lines. Furthermore, we also established that this region was important in vivo by demonstrating that expression from a site 1-driven b-galactosidase reporter construct was directed to islet b-cells in transgenic mice. The activity of the site 1-driven constructs was reduced substantially in b-cell lines by mutating a hepatocyte nuclear factor 3 (HNF3)-like site located between nucleotides 22007 and 21996. Gel shift analysis indicated that HNF3b present in islet b cells binds to this element. Immunohistochemical studies revealed that HNF3b was present within the nuclei of almost all islet b cells and subsets of pancreatic acinar cells. Together, these results suggest that HNF3b, a key regulator of endodermal cell lineage development, plays an essential role in the cell-type-specific transcription of the pdx-1 gene in the pancreas

    Essential Role of the Small GTPase Ran in Postnatal Pancreatic Islet Development

    Get PDF
    The small GTPase Ran orchestrates pleiotropic cellular responses of nucleo-cytoplasmic shuttling, mitosis and subcellular trafficking, but whether deregulation of these pathways contributes to disease pathogenesis has remained elusive. Here, we generated transgenic mice expressing wild type (WT) Ran, loss-of-function Ran T24N mutant or constitutively active Ran G19V mutant in pancreatic islet β cells under the control of the rat insulin promoter. Embryonic pancreas and islet development, including emergence of insulin+ β cells, was indistinguishable in control or transgenic mice. However, by one month after birth, transgenic mice expressing any of the three Ran variants exhibited overt diabetes, with hyperglycemia, reduced insulin production, and nearly complete loss of islet number and islet mass, in vivo. Deregulated Ran signaling in transgenic mice, adenoviral over-expression of WT or mutant Ran in isolated islets, or short hairpin RNA (shRNA) silencing of endogenous Ran in model insulinoma INS-1 cells, all resulted in decreased expression of the pancreatic and duodenal homeobox transcription factor, PDX-1, and reduced β cell proliferation, in vivo. These data demonstrate that a finely-tuned balance of Ran GTPase signaling is essential for postnatal pancreatic islet development and glucose homeostasis, in vivo

    FGF4 and Retinoic Acid Direct Differentiation of hESCs into PDX1-Expressing Foregut Endoderm in a Time- and Concentration-Dependent Manner

    Get PDF
    BACKGROUND: Retinoic acid (RA) and fibroblast growth factor 4 (FGF4) signaling control endoderm patterning and pancreas induction/expansion. Based on these findings, RA and FGFs, excluding FGF4, have frequently been used in differentiation protocols to direct differentiation of hESCs into endodermal and pancreatic cell types. In vivo, these signaling pathways act in a temporal and concentration-dependent manner. However, in vitro, the underlying basis for the time of addition of growth and differentiation factors (GDFs), including RA and FGFs, as well as the concentration is lacking. Thus, in order to develop robust and reliable differentiation protocols of ESCs into mature pancreatic cell types, including insulin-producing beta cells, it will be important to mechanistically understand each specification step. This includes differentiation of mesendoderm/definitive endoderm into foregut endoderm--the origin of pancreatic endoderm. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data on the individual and combinatorial role of RA and FGF4 in directing differentiation of ActivinA (AA)-induced hESCs into PDX1-expressing cells. FGF4's ability to affect endoderm patterning and specification in vitro has so far not been tested. By testing out the optimal concentration and timing of addition of FGF4 and RA, we present a robust differentiation protocol that on average generates 32% PDX1(+) cells. Furthermore, we show that RA is required for converting AA-induced hESCs into PDX1(+) cells, and that part of the underlying mechanism involves FGF receptor signaling. Finally, further characterization of the PDX1(+) cells suggests that they represent foregut endoderm not yet committed to pancreatic, posterior stomach, or duodenal endoderm. CONCLUSION/SIGNIFICANCE: In conclusion, we show that RA and FGF4 jointly direct differentiation of PDX1(+) foregut endoderm in a robust and efficient manner. RA signaling mediated by the early induction of RARbeta through AA/Wnt3a is required for PDX1 expression. Part of RA's activity is mediated by FGF signaling

    Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing

    No full text
    On the basis of phylogenetic analyses, we uncovered a variant of the CDX2 homeobox gene, a major regulator of the development and homeostasis of the gut epithelium, also involved in cancer. This variant, miniCDX2, is generated by alternative splicing coupled to alternative translation initiation, and contains the DNA-binding homeodomain but is devoid of transactivation domain. It is predominantly expressed in crypt cells, whereas the CDX2 protein is present in crypt cells but also in differentiated villous cells. Functional studies revealed a dominant-negative effect exerted by miniCDX2 on the transcriptional activity of CDX2, and conversely similar effects regarding several transcription-independent functions of CDX2. In addition, a regulatory role played by the CDX2 and miniCDX2 homeoproteins on their pre-mRNA splicing is displayed, through interactions with splicing factors. Overexpression of miniCDX2 in the duodenal Brunner glands leads to the expansion of the territory of these glands and ultimately to brunneroma. As a whole, this study characterized a new and original variant of the CDX2 homeobox gene. The production of this variant represents not only a novel level of regulation of this gene, but also a novel way to fine-tune its biological activity through the versatile functions exerted by the truncated variant compared to the full-length homeoprotein. This study highlights the relevance of generating protein diversity through alternative splicing in the gut and its diseases
    corecore