23 research outputs found

    Accelerating clinical research in neuromyelitis optica spectrum disorders

    Get PDF
    Neuromyelitis optica spectrum disorders are rare relapsing inflammatory central nervous system diseases with a heterogenous immunological and clinical spectrum. International collaborations are required to: (i) reach a better understanding of the disease and its subtypes; (ii) develop laboratory and imaging biomarkers; and (iii) ultimately improve treatments

    Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients

    Get PDF
    Background Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been reported in patients with aquaporin-4 antibody (AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD). The objective of this study was to describe optic neuritis (ON)-induced neuro-axonal damage in the retina of MOG-IgG-positive patients in comparison with AQP4-IgG-positive NMOSD patients. Methods Afferent visual system damage following ON was bilaterally assessed in 16 MOG-IgG-positive patients with a history of ON and compared with that in 16 AQP4-IgG-positive NMOSD patients. In addition, 16 healthy controls matched for age, sex, and disease duration were analyzed. Study data included ON history, retinal optical coherence tomography, visual acuity, and visual evoked potentials. Results Eight MOG-IgG-positive patients had a previous diagnosis of AQP4-IgG-negative NMOSD with ON and myelitis, and eight of (mainly recurrent) ON. Twenty-nine of the 32 eyes of the MOG-IgG-positive patients had been affected by at least one episode of ON. Peripapillary retinal nerve fiber layer thickness (pRNFL) and ganglion cell and inner plexiform layer volume (GCIP) were significantly reduced in ON eyes of MOG- IgG-positive patients (pRNFL = 59 ± 23 μm; GCIP = 1.50 ± 0.34 mm3) compared with healthy controls (pRNFL = 99 ± 6 μm, p < 0.001; GCIP = 1.97 ± 0.11 mm3, p < 0.001). Visual acuity was impaired in eyes after ON in MOG-IgG-positive patients (0.35 ± 0.88 logMAR). There were no significant differences in any structural or functional visual parameters between MOG-IgG-positive and AQP4 -IgG-positive patients (pRNFL: 59 ± 21 μm; GCIP: 1.41 ± 0.27 mm3; Visual acuity = 0.72 ± 1.09 logMAR). Importantly, MOG-IgG-positive patients had a significantly higher annual ON relapse rate than AQP4-IgG-positive patients (median 0.69 vs. 0.29 attacks/year, p = 0.004), meaning that on average a single ON episode caused less damage in MOG-IgG-positive than in AQP4-IgG- positive patients. pRNFL and GCIP loss correlated with the number of ON episodes in MOG-IgG-positive patients (p < 0.001), but not in AQP4-IgG- positive patients. Conclusions Retinal neuro-axonal damage and visual impairment after ON in MOG-IgG-positive patients are as severe as in AQP4-IgG- positive NMOSD patients. In MOG-IgG-positive patients, damage accrual may be driven by higher relapse rates, whereas AQP4-IgG-positive patients showed fewer but more severe episodes of ON. Given the marked damage in some of our MOG-IgG-positive patients, early diagnosis and timely initiation and close monitoring of immunosuppressive therapy are important

    Practical recognition tools of immunoglobulin G serum antibodies against the myelin oligodendrocyte glycoprotein‐positive optic neuritis and its clinical implications

    Get PDF
    Myelin oligodendrocyte glycoprotein (MOG)-associated disease is an autoimmune disease of the central nervous system, associated with the presence of immunoglobulin G serum antibodies against MOG. Recent data have allowed characterization of the clinical spectrum of MOG-associated disease, which is now considered a new disease entity, distinct from multiple sclerosis and neuromyelitis optica spectrum disorders. Optic neuritis is the most common clinical presentation of MOG-associated disease in adults, both at disease onset and during the disease course, and has several distinct clinical and paraclinical features. Immunoglobulin G serum antibodies against MOG-positive optic neuritis is often bilateral and associated with optic disc swelling and a longitudinally extensive abnormal magnetic resonance imaging signal involving the retrobulbar portion of the optic nerve. The visual acuity during the acute attack is severely decreased, and the response to corticosteroids is often rapid and prominent. However, early relapses after steroid cessation are common, and a subset of patients is left with a permanent visual disability. In this review, we discuss the clinical and paraclinical features of immunoglobulin G serum antibodies against MOG-positive optic neuritis in adults, and focus on the distinctive features that can enable its early diagnosis. Therapeutical considerations at the acute stage and for relapse prevention are further deliberated

    Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system

    Get PDF
    Background: Diffusion Tensor Imaging (DTI) can evaluate microstructural tissue damage in the optic radiation (OR) of patients with clinically isolated syndrome (CIS), early relapsing-remitting multiple sclerosis and neuromyelitis optica spectrum disorders (NMOSD). Different post-processing techniques, e.g. tract-based spatial statistics (TBSS) and probabilistic tractography, exist to quantify this damage. Objective: To evaluate the capacity of TBSS-based atlas region-of-interest (ROI) combination with 1) posterior thalamic radiation ROIs from the Johns Hopkins University atlas (JHU-TBSS), 2) Juelich Probabilistic ROIs (JUEL-TBSS) and tractography methods using 3) ConTrack (CON-PROB) and 4) constrained spherical deconvolution tractography (CSD-PROB) to detect OR damage in patients with a) NMOSD with prior ON (NMOSD-ON), b) CIS and early RRMS patients with ON (CIS/RRMS-ON) and c) CIS and early RRMS patients without prior ON (CIS/RRMS-NON) against healthy controls (HCs). Methods: Twenty-three NMOSD-ON, 18 CIS/RRMS-ON, 21 CIS/RRMS-NON, and 26 HCs underwent 3 T MRI. DTI data analysis was carried out using JUEL-TBSS, JHU-TBSS, CON-PROB and CSD-PROB. Optical coherence tomography (OCT) and visual acuity testing was performed in the majority of patients and HCs. Results: Absolute OR fractional anisotropy (FA) values differed between all methods but showed good correlation and agreement in Bland-Altman analysis. OR FA values between NMOSD and HC differed throughout the methodologies (p-values ranging from p < 0.0001 to 0.0043). ROC-analysis and effect size estimation revealed higher AUCs and R squared for CSD-PROB (AUC=0.812; R squared=0.282) and JHU-TBSS (AUC=0.756; R squared=0.262), compared to CON-PROB (AUC=0.742; R squared=0.179) and JUEL-TBSS (AUC=0.719; R squared=0.161). Differences between CIS/RRMS-NON and HC were only observable in CSD-PROB (AUC=0.796; R squared=0.094). No significant differences between CIS/RRMS-ON and HC were detected by any of the methods. Conclusions: All DTI post-processing techniques facilitated the detection of OR damage in patient groups with severe microstructural OR degradation. The comparison of distinct disease groups by use of different methods may lead to different - either false-positive or false-negative - results. Since different DTI post-processing approaches seem to provide complementary information on OR damage, application of distinct methods may depend on the relevant research question

    Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study

    Get PDF
    Background: Serum antibodies against myelin-oligodendrocyte-glycoprotein (MOG-IgG) are detectable in a proportion of patients with acute or relapsing neuroinflammation. It is unclear, if neuro-axonal damage occurs only in an attack-dependent manner or also progressively. Therefore, this study aimed to investigate longitudinally intra-retinal layer changes in eyes without new optic neuritis (ON) in MOG-IgG-seropositive patients. Methods: We included 38 eyes of 24 patients without ON during follow-up (F/U) [median years (IQR)] 1.9 (1.0–2.2) and 56 eyes of 28 age- and sex-matched healthy controls (HC). The patient group’s eyes included 18 eyes without (EyeON-) and 20 eyes with history of ON (EyeON+). Using spectral domain optical coherence tomography (OCT), we acquired peripapillary retinal nerve fiber layer thickness (pRNFL) and volumes of combined ganglion cell and inner plexiform layer (GCIP), inner nuclear layer (INL), and macular volume (MV). High-contrast visual acuity (VA) was assessed at baseline. Results: At baseline in EyeON-, pRNFL (94.3 ± 15.9 μm, p = 0.36), INL (0.26 ± 0.03 mm3, p = 0.11), and MV (2.34 ± 0.11 mm3, p = 0.29) were not reduced compared to HC; GCIP showed thinning (0.57 ± 0.07 mm3; p = 0.008), and VA was reduced (logMAR 0.05 ± 0.15 vs. − 0.09 ± 0.14, p = 0.008) in comparison to HC. Longitudinally, we observed pRNFL thinning in models including all patient eyes (annual reduction − 2.20 ± 4.29 μm vs. − 0.35 ± 1.17 μm, p = 0.009) in comparison to HC. Twelve EyeON- with other than ipsilateral ON attacks ≤ 6 months before baseline showed thicker pRNFL at baseline and more severe pRNFL thinning in comparison to 6 EyeON- without other clinical relapses. Conclusions: We observed pRNFL thinning in patients with MOG-IgG during F/U, which was not accompanied by progressive GCIP reduction. This effect could be caused by a small number of EyeON- with other than ipsilateral ON attacks within 6 months before baseline. One possible interpretation could be a reduction of the swelling, which could mean that MOG-IgG patients show immune-related swelling in the CNS also outside of an attack’s target area

    MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients

    Get PDF
    Background: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been reported in patients with aquaporin-4 antibody (AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD). The objective of this study was to describe optic neuritis (ON)-induced neuro-axonal damage in the retina of MOG-IgG-positive patients in comparison with AQP4-IgG-positive NMOSD patients. Methods: Afferent visual system damage following ON was bilaterally assessed in 16 MOG-IgG-positive patients with a history of ON and compared with that in 16 AQP4-IgG-positive NMOSD patients. In addition, 16 healthy controls matched for age, sex, and disease duration were analyzed. Study data included ON history, retinal optical coherence tomography, visual acuity, and visual evoked potentials. Results: Eight MOG-IgG-positive patients had a previous diagnosis of AQP4-IgG-negative NMOSD with ON and myelitis, and eight of (mainly recurrent) ON. Twenty-nine of the 32 eyes of the MOG-IgG-positive patients had been affected by at least one episode of ON. Peripapillary retinal nerve fiber layer thickness (pRNFL) and ganglion cell and inner plexiform layer volume (GCIP) were significantly reduced in ON eyes of MOG-IgG-positive patients (pRNFL = 59 ± 23 μm; GCIP = 1.50 ± 0.34 mm3) compared with healthy controls (pRNFL = 99 ± 6 μm, p < 0.001; GCIP = 1.97 ± 0.11 mm3, p < 0.001). Visual acuity was impaired in eyes after ON in MOG-IgG-positive patients (0.35 ± 0.88 logMAR). There were no significant differences in any structural or functional visual parameters between MOG-IgG-positive and AQP4-IgG-positive patients (pRNFL: 59 ± 21 μm; GCIP: 1.41 ± 0.27 mm3; Visual acuity = 0.72 ± 1.09 logMAR). Importantly, MOG-IgG-positive patients had a significantly higher annual ON relapse rate than AQP4-IgG-positive patients (median 0.69 vs. 0.29 attacks/year, p = 0.004), meaning that on average a single ON episode caused less damage in MOG-IgG-positive than in AQP4-IgG-positive patients. pRNFL and GCIP loss correlated with the number of ON episodes in MOG-IgG-positive patients (p < 0.001), but not in AQP4-IgG-positive patients. Conclusions: Retinal neuro-axonal damage and visual impairment after ON in MOG-IgG-positive patients are as severe as in AQP4-IgG-positive NMOSD patients. In MOG-IgG-positive patients, damage accrual may be driven by higher relapse rates, whereas AQP4-IgG-positive patients showed fewer but more severe episodes of ON. Given the marked damage in some of our MOG-IgG-positive patients, early diagnosis and timely initiation and close monitoring of immunosuppressive therapy are important

    The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography

    Get PDF
    BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (κ 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (κ 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies

    The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis

    Get PDF
    Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON. Trial registration: ClinicalTrials.gov, identifier: NCT05605951

    The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis

    Get PDF
    Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON

    In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group

    Get PDF
    The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD
    corecore