577 research outputs found

    Verifying the Kugo-Ojima Confinement Criterion in Landau Gauge Yang-Mills Theory

    Full text link
    Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory.Comment: 4 pages, no figures; version to be published in Physical Review Letter

    Die Ausnutzung des Reaktor FR 2 als Forschungseinrichtung

    Get PDF

    On the infrared freezing of perturbative QCD in the Minkowskian region

    Full text link
    The infrared freezing of observables is known to hold at fixed orders of perturbative QCD if the Minkowskian quantities are defined through the analytic continuation from the Euclidean region. In a recent paper [1] it is claimed that infrared freezing can be proved also for Borel resummed all-orders quantities in perturbative QCD. In the present paper we obtain the Minkowskian quantities by the analytic continuation of the all-orders Euclidean amplitudes expressed in terms of the inverse Mellin transform of the corresponding Borel functions [2]. Our result shows that if the principle of analytic continuation is preserved in Borel-type resummations, the Minkowskian quantities exhibit a divergent increase in the infrared regime, which contradicts the claim made in [1]. We discuss the arguments given in [1] and show that the special redefinition of Borel summation at low energies adopted there does not reproduce the lowest order result obtained by analytic continuation.Comment: 19 pages, 1 figur

    Glueballs in a Hamiltonian Light-Front Approach to Pure-Glue QCD

    Get PDF
    We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it. The renormalization procedure is designed to produce a Hamiltonian that will yield physical states that rapidly converge in an expansion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical principles of light-front pure-glue QCD, including Lorentz covariance and gauge covariance. This means that the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated physical principles of pure-glue QCD, we are able to derive recursion relations that define the Hamiltonian to all orders in perturbation theory in terms of the running coupling. We approximate all physical states as two-gluon states, and use our recursion relations to calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize the Hamiltonian using basis-function expansions for the gluons' color, spin, and momentum degrees of freedom. We examine the sensitivity of our results to the cutoff and use them to analyze the nonperturbative scale dependence of the coupling. We investigate the effect of the dynamical rotational symmetry of light-front field theory on the rotational degeneracies of the spectrum and compare the spectrum to recent lattice results. Finally, we examine our wave functions and analyze the various sources of error in our calculation.Comment: 75 pages, 17 figures, 1 tabl

    Bulk fields with general brane kinetic terms

    Full text link
    We analyse the effect of general brane kinetic terms for bulk scalars, fermions and gauge bosons in theories with extra dimensions, with and without supersymmetry. We find in particular a singular behaviour when these terms contain derivatives orthogonal to the brane. This is brought about by δ(0)\delta(0) divergences arising at second and higher order in perturbation theory. We argue that this behaviour can be smoothed down by classical renormalization.Comment: 31 pages, v2 few typos correcte

    An Algebraic Criterion for the Ultraviolet Finiteness of Quantum Field Theories

    Get PDF
    An algebraic criterion for the vanishing of the beta function for renormalizable quantum field theories is presented. Use is made of the descent equations following from the Wess-Zumino consistency condition. In some cases, these equations relate the fully quantized action to a local gauge invariant polynomial. The vanishing of the anomalous dimension of this polynomial enables us to establish a nonrenormalization theorem for the beta function βg\beta_g, stating that if the one-loop order contribution vanishes, then βg\beta_g will vanish to all orders of perturbation theory. As a by-product, the special case in which βg\beta_g is only of one-loop order, without further corrections, is also covered. The examples of the N=2,4 supersymmetric Yang-Mills theories are worked out in detail.Comment: 1+32 pages, LaTeX2e, typos correcte

    Analytic structure of the gluon and quark propagators in Landau gauge QCD

    Full text link
    In Landau gauge QCD the infrared behavior of the propagator of transverse gluons can be analytically determined to be a power law from Dyson-Schwinger equations. This propagator clearly shows positivity violation, indicating the absence of the transverse gluons from the physical spectrum, i.e. gluon confinement. A simple analytic structure for the gluon propagator is proposed capturing all important features. We provide arguments that the Landau gauge quark propagator possesses a singularity on the real timelike axis. For this propagator we find a positive definite Schwinger function.Comment: 6 pages, 3 figures; summary of a talk given at several occasions; to be published in the proceedings of the international conference QCD DOWN UNDER, March 10 - 19, Adelaide, Australi

    Four Fermion Field Theories and the Chern-Simons Field: A Renormalization Group Study

    Get PDF
    In (2+1) dimensions, we consider the model of a NN flavor, two-component fermionic field interacting through a Chern-Simons field besides a four fermion self-interaction which consists of a linear combination of the Gross-Neveu and Thirring like terms. The four fermion interaction is not perturbatively renormalizable and the model is taken as an effective field theory in the region of low momenta. Using Zimmerman procedure for reducing coupling constants, it is verified that, for small values of the Chern-Simons parameter, the origin is an infrared stable fixed point but changes to ultraviolet stable as α\alpha becomes bigger than a critical αc\alpha_c. Composite operators are also analyzed and it is shown that a specific four fermion interaction has an improved ultraviolet behavior as NN increases.Comment: 9 pages, revte
    • …
    corecore