30 research outputs found

    Proton Shuttling and Reaction Paths in Dissociative Electron Attachment to o- and p-Tetrafluorohydroquinone, an Experimental and Theoretical Study

    Get PDF
    Here we present a combined experimental and theoretical study on the fragmentation of o- and p-tetrafluorohydroquinone upon low energy electron attachment. Despite an identical ring-skeleton and identical functional groups in these constitutional isomers, they show distinctly different fragmentation patterns, a phenomenon that cannot be explained by distinct resonances or different thermochemistry. Using high-level quantum chemical calculations with the computationally affordable domain localized pair natural orbital approach, DLPNO–CCSD(T), we are able to provide a complete and accurate description of the respective reaction dynamics, revealing proton shuttling and transition states for competing channels as the explanation for the different behavior of these isomers. The results represent a “schoolbook example” of how the combination of experiment and modern high-level theory may today provide a thorough understanding of complex reaction dynamics by computationally affordable means.(This work was supported by the Icelandic Center of Research (RANNIS) Grant No. 13049305 and 141218051 and the University of Iceland Research Fund.Peer Reviewe

    Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

    Get PDF
    We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.CWH likes to thank Luc van Kessel, Kerim Arat and Sebastiaan Lokhorst for their assistance with the Monte Carlo simulations of Figure 10. OI acknowledges supported from the Icelandic Center of Research (RANNIS) Grant No. 13049305(1-3) and the University of Iceland Research Fund. RKTP acknowledges a doctoral grant from the University of Iceland Research Fund and financial support from the COST Action CM1301; CELINA, for short term scientific missions (STSMs)Peer Reviewe

    The role of low-energy electron interactions in cis-pt(Co)2 br2 fragmentation

    Get PDF
    Funding Information: Funding: This project was conducted within the framework of ELENA, a Horizon 2020 research and innovation program under Marie Sklodowska-Curie Innovative Training Network, under the grant agreement No. 722149. M.C. and O.I. acknowledge support from the Icelandic Center of Research (RANNIS), grant no. 13049305(1−3). M.C. acknowledges a doctoral grant from the University of Iceland Research Fund. H.L. and L.M.-W. thank the National Science Foundation for support under grants CHE-1607547 and CHE-1904802. F.F.d.S. acknowledges the Portuguese National Funding Agency for Science Research and Technology (FCT-MCTES), through the research grants PTDC/FIS-AQM/31215/2017 and UIDB/00068/2020 (CEFITEC). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo-and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2 (CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2 Cl2 (cisplatin) and the carbonyl analog Pt(CO)2 Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2 Cl2.publishersversionpublishe

    Electron-Transfer-Induced Side-Chain Cleavage in Tryptophan Facilitated through Potassium-Induced Transition-State Stabilization in the Gas Phase

    Get PDF
    Fragmentation of transient negative ions of tryptophan molecules formed through electron transfer in collisions with potassium atoms is presented for the first time in the laboratory collision energy range of 20 up to 100 eV. In the unimolecular decomposition process, the dominating side-chain fragmentation channel is assigned to the dehydrogenated indoline anion, in contrast to dissociative electron attachment of free low-energy electrons to tryptophan. The role of the collision complex formed by the potassium cation and tryptophan negative ion in the electron transfer process is significant for the mechanisms that operate at lower collision energies. At those collision times, on the order of a few tens of fs, the collision complex may not only influence the lifetime of the anion but also stabilize specific transition states and thus alter the fragmentation patterns considerably. DFT calculations, at the BHandHLYP/6-311++G(3df,2pd) level of theory, are used to explore potential reaction pathways and the evolvement of the charge distribution along those.F.F.d.S., T.C., and A.R. acknowledge the Portuguese National Funding Agency FCT-MCTES for IF-FCT IF/00380/2014, SFRH/BD/52538/2014, and PD/BD/114449/2016 and together with P.L.-V. the research grants PTDC/FIS-AQM/31215/2017 and PTDC/FIS-AQM/31281/2017. This work was also supported by Radiation Biology and Biophysics Doctoral Training Programme (RaBBiT, PD/00193/2012); UIDB/00068/2020 (CEFITEC) and UIDB/04378/2020 (UCIBIO). M.J.C. and A.G. also thank FCT-MCTES UIDB/04046/2020 and UIDP/04046/2020, and A.G. thanks the SFRH/BPD/89722/2012 grant. G.G. is partially funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades (project no. PID2019-104727RB-C21) and CSIC (Project LINKA20085). O.I. acknowledges the Icelandic Center of Research (RANNIS) and the University of Iceland Research Fund for financial support. The authors thank Ragnar Bjornsson for fruitful discussions while preparing this manuscript.Pre-prin

    Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

    Get PDF
    In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12.The authors acknowledge the fruitful and productive environment provided by the COST Action CELINA CM1301 and we would like to take the opportunity to extend our thanks to Prof. Petra Swiderek for running this Action exceptionally well. Marc Hanefeld and Michael Huth acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through Priority Program SPP 1928, project HU 752/12-1. DHF thanks the National Science Foundation for support of this work through the linked collaborative grants CHE-1607621 and CHE-1607547. OI acknowledges supported from the Icelandic Center of Research (RANNIS) Grant No. 13049305(1-3) and the University of Iceland Research Fund. RKTP acknowledges a doctoral grant from the University of Iceland Research Fund and financial support from the COST Action CM1301; CELINA, for short term scientific missions (STSMs).Peer Reviewe

    Low-energy electrons: fundamentals and applications

    No full text

    Computational study of dissociative electron attachment to

    No full text
    Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds

    Velocity slice imaging study on dissociative electron attachment to CF<sub>4</sub>

    No full text
    A Velocity Slice Imaging (VSI) study on Dissociative Electron Attachment (DEA) to carbon tetrafluoride, CF4, is presented. Two fragments are observed; F− produced from two, partly overlapping, resonances and CF−3 deriving from a single resonance. The angular distributions of these anionic fragments and their kinetic energy distributions are reported and are then discussed in context of the influence of the Jahn-Teller effect on the symmetry of the resonant states involved
    corecore