149 research outputs found

    Depletion of chlorine into HCl ice in a protostellar core

    Get PDF
    The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <105<10^{-5} has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2_{2} hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of <1e-10 in most of the protostellar core. We find the 35Cl/37Cl ratio in OMC-2 FIR 4 to be 3.2\pm0.1, consistent with the solar system value.Comment: 13 pages, 12 figures, accepted for publication in A&

    XSHOOTER spectroscopy of the enigmatic planetary nebula Lin49 in the Small Magellanic Cloud

    Get PDF
    We performed a detailed spectroscopic analysis of the fullerene C60-containing planetary nebula (PN) Lin49 in the Small Magellanic Cloud (SMC) using XSHOOTER at the European Southern Observatory Very Large Telescope and the Spitzer/Infrared Spectrograph instruments. We derived nebular abundances for nine elements. We used TLUSTY to derive photospheric parameters for the central star. Lin49 is C-rich and metal-deficient PN (Z ∼ 0.0006). The nebular abundances are in good agreement with asymptotic giant branch nucleosynthesis models for stars with initial mass 1.25 M⊙ and metallicity Z = 0.001. Using the TLUSTY synthetic spectrum of the central star to define the heating and ionizing source, we constructed the photoionization model with CLOUDY that matches the observed spectral energy distribution (SED) and the line fluxes in the UV to far-IR wavelength ranges simultaneously. We could not fit the ∼1–5 μm SED using a model with 0.005–0.1-μm-sized graphite grains and a constant hydrogen density shell owing to the prominent near-IR excess, while at other wavelengths the model fits the observed values reasonably well. We argue that the near-IR excess might indicate either (1) the presence of very small particles in the form of small carbon clusters, small graphite sheets, or fullerene precursors, or (2) the presence of a high-density structure surrounding the central star. We found that SMC C60 PNe show a near-IR excess component to lesser or greater degree. This suggests that these C60 PNe might maintain a structure nearby their central star

    On the interplay between flaring and shadowing in disks around Herbig Ae/Be stars

    Get PDF
    Based on the SED, Herbig stars have been categorized into two observational groups, reflecting their overall disk structure: group I members have disks with a higher degree of flaring than their group II counterparts. We investigate the 5-35 um Spitzer IRS spectra of a sample of 13 group I sources and 20 group II sources. We focus on the continuum emission to study the underlying disk geometry. We have determined the [30/13.5] and [13.5/7] continuum flux ratios. The 7-um flux excess with respect to the stellar photosphere is measured, as a marker for the strength of the near-IR emission produced by the inner disk. We have compared our data to self-consistent passive-disk model spectra, for which the same quantities were derived. We confirm the literature result that the difference in continuum emission between group I and II sources can largely be explained by a different amount of small dust grains. However, we report a strong correlation between the [30/13.5] and [13.5/7] flux ratios for Meeus group II sources. Moreover, the [30/13.5] flux ratio decreases with increasing 7-um excess for all targets in the sample. To explain these correlations with the models, we need to introduce an artificial scaling factor for the inner disk height. In roughly 50% of the Herbig Ae/Be stars in our sample, the inner disk must be inflated by a factor 2 to 3 beyond what hydrostatic calculations predict. The total disk mass in small dust grains determines the degree of flaring. We conclude, however, that for any given disk mass in small dust grains, the shadowing of the outer (tens of AU) disk is determined by the scale height of the inner disk (1 AU). The inner disk partially obscures the outer disk, reducing the disk surface temperature. Here, for the first time, we prove these effects observationally.Comment: 4 pages, 3 figures, accepted by A&

    Developments and challenges in dermatology: an update from the Interactive Derma Academy (IDeA) 2019

    Get PDF
    The 2019 Interactive Derma Academy (IDeA) meeting was held in Lisbon, Portugal, 10–12 May, bringing together leading dermatology experts from across Europe, the Middle East and Asia. Over three days, the latest developments and challenges in relation to the pathophysiology, diagnosis, evaluation and management of dermatological conditions were presented, with a particular focus on acne, atopic dermatitis (AD) and actinic keratosis (AK). Interesting clinical case studies relating to these key topics were discussed with attendees to establish current evidence-based best practices. Presentations reviewed current treatments, potential therapeutic approaches and key considerations in the management of acne, AK and AD, and discussed the importance of the microbiome in these conditions, as well as the provision of patient education/support. It was highlighted that active treatment is not always required for AK, depending on patient preferences and clinical circumstances. In addition to presentations, two interactive workshops on the diagnosis and treatment of sexually transmitted infections/diseases (STIs/STDs) presenting to the dermatology clinic, and current and future dermocosmetics were conducted. The potential for misdiagnosis of STIs/STDs was discussed, with dermoscopy and/or reflectance confocal microscopy suggested as useful diagnostic techniques. In addition, botulinum toxin was introduced as a potential dermocosmetic, and the possibility of microbiome alteration in the treatment of dermatological conditions emphasized. Furthermore, several challenges in dermatology, including the use of lasers, the complexity of atopic dermatitis, wound care, use of biosimilars and application of non-invasive techniques in skin cancer diagnosis were reviewed. In this supplement, we provide an overview of the presentations and discussions from the fourth successful IDeA meeting, summarizing the key insights shared by dermatologists from across the globe

    Depletion of chlorine into HCl ice in a protostellar core: The CHESS spectral survey of OMC-2 FIR 4

    Get PDF
    Context. The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <10^(-5) has not yet been well studied. Aims. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. Methods. We observed transitions of HCl and H_2Cl^+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H_2 hyperfine collisional excitation rate coefficients. Results. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9 × 10^(-11), a factor of only 10^(-3) that of volatile elemental chlorine. The H_2Cl^+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Conclusions. Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of ≲10^(-10) in most of the protostellar core. We find the [^(35)Cl]/[^(37)Cl] ratio in OMC-2 FIR 4 to be 3.2 ± 0.1, consistent with the solar system value

    Vaccination Targeting a Surface Sialidase of P. acnes: Implication for New Treatment of Acne Vulgaris

    Get PDF
    BACKGROUND: Acne vulgaris afflicts more than fifty million people in the United State and the severity of this disorder is associated with the immune response to Propionibacterium acnes (P. acnes). Systemic therapies for acne target P. acnes using antibiotics, or target the follicle with retinoids such as isotretinoin. The latter systemic treatment is highly effective but also carries a risk of side effects including immune imbalance, hyperlipidemia, and teratogenicity. Despite substantial research into potential new therapies for this common disease, vaccines against acne vulgaris are not yet available. METHODS AND FINDINGS: Here we create an acne vaccine targeting a cell wall-anchored sialidase of P. acnes. The importance of sialidase to disease pathogenesis is shown by treatment of a human sebocyte cell line with recombinant sialidase that increased susceptibility to P. acnes cytotoxicity and adhesion. Mice immunized with sialidase elicit a detectable antibody; the anti-sialidase serum effectively neutralized the cytotoxicity of P. acnes in vitro and P. acnes-induced interleukin-8 (IL-8) production in human sebocytes. Furthermore, the sialidase-immunized mice provided protective immunity against P. acnes in vivo as this treatment blocked an increase in ear thickness and release of pro-inflammatory macrophage inflammatory protein (MIP-2) cytokine. CONCLUSIONS: Results indicated that acne vaccines open novel therapeutic avenues for acne vulgaris and other P. acnes-associated diseases

    Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing evidence indicates that oxidative stress can be a primary cause of male infertility. Non-enzymatic antioxidants play an important protective role against oxidative damages and lipid peroxidation. Human seminal plasma is a natural reservoir of antioxidants. The aim of this study was to determine glutathione (GSH) concentrations, trace element levels (zinc and selenium) and the lipid peroxidation end product, malondialdehyde (MDA), in the seminal plasma of men with different fertility potentials.</p> <p>Methods</p> <p>Semen samples from 60 fertile men (normozoospermics) and 190 infertile patients (74 asthenozoospermics, 56 oligozoospermics, and 60 teratozoospermics) were analyzed for physical and biochemical parameters. Zinc (Zn) and selenium (Se) levels were estimated by atomic absorption spectrophotometry. Total GSH (GSHt), oxidized GSH (GSSG), reduced GSH (GSHr) and MDA concentrations were measured spectrophotometrically.</p> <p>Results</p> <p>Zn and Se concentrations in seminal plasma of normozoospermics were more elevated than the three abnormal groups. Nevertheless, only the Zn showed significant differences. On the other hand, Zn showed positive and significant correlations with sperm motility (P = 0.03, r = 0.29) and count (P < 0.01, r = 0.49); however Se was significantly correlated only with sperm motility (P < 0.01, r = 0.36). GSHt, GSSG and GSHr were significantly higher in normozoospermics than in abnormal groups. We noted a significant association between seminal GSHt and sperm motility (P = 0.03). GSSG was highly correlated to sperm motility (P < 0.001) and negatively associated to abnormal morphology (P < 0.001). GSHr was significantly associated to total sperm motility (P < 0.001) and sperm count (P = 0.01). MDA levels were significantly higher in the three abnormal groups than in normozoospermics. Rates of seminal MDA were negatively associated to sperm motility (P < 0.01; r = -0.24) and sperm concentration (P = 0.003; r = -0.35) Meanwhile, there is a positive correlation between seminal lipid peroxidation and the percentage of abnormal morphology (P = 0.008).</p> <p>Conclusions</p> <p>This report revealed that decreased seminal GSH and trace element deficiencies are implicated in low sperm quality and may be an important indirect biomarker of idiopathic male infertility. Our results sustain that the evaluation of seminal antioxidant status in infertile men is necessary and can be helpful in fertility assessment from early stages.</p

    The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa

    Get PDF
    The aim of this study was to investigate the relationship between seminal leukocytes, reactive oxygen species (ROS) production in the ejaculate, and markers of apoptosis in human spermatozoa. Semen samples were collected from 60 patients attending fertility clinics at the Reproductive Biology Unit at Tygerberg Academic Hospital and Vincent Pallotti Hospital, Cape Town, South Africa. The concentration of seminal leukocytes was determined and was correlated with ROS production in the ejaculate, the percentage of superoxide (·O2 )- and hydrogen peroxide (H2O2)-positive spermatozoa, glutathione activation in the ejaculate, and with markers of apoptosis in spermatozoa, namely cysteine-dependent aspartate-directed proteases (caspase)-3/7 activation, mitochondrial membrane potential (ΔΨm), and the percentage of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive sperm. Significant correlations with the concentration of seminal leukocytes were found for ROS production in the ejaculate, the percentage of ·O2 -positive spermatozoa, and caspase-3/7 activation in the ejaculate. Leukocytospermic samples showed significantly higher ROS production, percentage of ·O2 -positive sperm, GSH activation, and caspase-3/7 activation compared to non-leukocytospermic samples. The percentage of ·O2 -positive sperm was significantly correlated with sperm ΔΨm and caspase-3/7 activation in the ejaculate. Sperm ΔΨm and TUNEL-positive sperm did not correlate with seminal leukocyte concentration. Data demonstrate that high seminal leukocyte concentrations that leads to increased seminal ROS production, and is also associated with caspase activation in the male germ cell and increased mitochondrial ROS production. The latter could possibly be a result of disturbed ΔΨm. The activation of caspase-3/7 could then follow the increased intrinsic superoxide levels due to depleted intrinsic glutathione (GSH). These cellular events might not directly and immediately lead to DNA fragmentation as an endpoint of apoptosis because of topological hindrances.Web of Scienc
    corecore