21 research outputs found

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region

    Get PDF
    Abstract Background The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. Results Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. Conclusions Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes

    Screening of Local Bacillus thuringiensis Isolates for Toxicity to Chilo partellus, Sesamia calamistis and Busseola fusca in Kenya

    No full text
    Stem borers are a major source of pre-harvest maize crop losses in Kenya and many Sub- Saharan African countries. This menace needs to be addressed if food security is to be realized in this region. Seven local isolates of Bacillus thuringiensis (Bt) strains were isolated from soils collected from Kakamega and Machakos districts in Kenya. They were screened for toxicity against 1st and 2nd instar larvae of Chilo partellus, Sesamia calamistis and Busseola fusca through laboratory bioassays on artificial and natural diets. On farm Bt toxin potency trials were carried out only in Machakos using isolate 1M which was isolated from the area. The various isolates showed differences in their toxicity to the three stem borers. Isolates 1M and VM-10 (from Machakos district) were found to be the most potent against C. partellus with larval mortalities of 100 % within 72 h. Their LD50 values were 0.004 mg/ml and 0.04 mg/ml respectively. The most toxic isolates against S. calamistis were, 44M, VM-10 and 1M, with larval mortalities of 73%, 64% and 62% respectively after 72h at a concentration of 8.6 mg/ml through artificial diet bioassays on 1st instar larvae. Isolates 44M and K10-2 showed high toxicity against B. fusca with larval mortalities of 20% by artificial diet bioassays and 44% by maize leaf bioassays respectively. Leaf disk bioassays with all the insect species showed higher larval mortalities than those done with the artificial diet bioassays indicating the larval preference of natural diet. However leaf disk bioassays with B. fusca recorded higher larval mortalities with sorghum than maize leaves. Field trial results obtained from Machakos district using a biopesticide made from isolate 1M indicated that it was highly effective in stem borer control. Keywords: Bacillus thuringiensis; bioassays; B. fusca; C. partellus; S. calamistis; insect larvae; mortality; toxicity. J. Trop. Microbiol. Biotechnol. Vol. 3 (2) 2007: pp. 27-3

    Fortification of alcoholic beverages (12% v/v) with tea (Camellia sinensis) reduces harmful effects of alcohol ingestion and metabolism in mouse model

    No full text
    Background: An animal model was used to study the health benefits inherent in tea fortified alcoholic beverages fed to laboratory mice. Objectives: An investigation of the effects of tea fortified alcoholic beverages 12% alcohol (v/v) on antioxidant capacity and liver dysfunction indicators in white Swiss mice including packed cell volume (PCV), albumin, total protein, alkaline phosphatase (ALP) and glutathione (GSH) was carried out. Methods: Plain, black, green and purple tea fortified alcohols were developed with varying tea concentrations of 1, 2 and 4 g/250 mL in 12% v/v. Control alcoholic beverages without teas were also developed. A permit (number IRC/13/12) was obtained for the animal research from the National Museums of Kenya, Institute of Primate Research prior to the start of the study. Alcoholic beverages were orally administered every 2 days for 4 weeks at 1 mL per mouse, and thereafter animals were euthanised and liver and blood samples harvested for analyses. Assays on body weight (bwt), packed cell volume (PCV) albumin, total protein, ALP and GSH were performed. Results were statistically analysed using GraphPad statistical package and significant differences of means of various treatments determined. Results: Consumption of tea fortified alcohols significantly decreased (p=0.0001) bwt at 0.32-9.58% and PCV at 5.56-22.75% for all teas. Total protein in serum and liver of mice fed on different tea fortified alcohols ranged between 6.26 and 9.24 g/dL and 2.14 and 4.02 g/dL, respectively. Albumin, ALP and GSH range was 0.92-2.88 mu g/L, 314.98-473.80 mu g/L and 17.88-28.62 mu M, respectively. Fortification of alcoholic beverages lowered liver ALP, replenished antioxidants and increased liver albumin, improving the nutritional status of the mice. Conclusions: The findings demonstrate tea's hepatoprotective mechanisms against alcohol-induced injury through promotion of endogenous antioxidants. The beneficial effects of tea in the fortified alcoholic beverages could be used to develop safer alcoholic beverages

    Malaria vector bionomics and transmission in irrigated and non-irrigated sites in western Kenya.

    No full text
    Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations

    A prospective cohort study of Plasmodium falciparum malaria in three sites of Western Kenya.

    No full text
    BackgroundMalaria in western Kenya is currently characterized by sustained high Plasmodial transmission and infection resurgence, despite positive responses in some areas following intensified malaria control interventions since 2006. This study aimed to evaluate long-term changes in malaria transmission profiles and to assess patterns of asymptomatic malaria infections in school children aged 5-15 years at three sites in western Kenya with heterogeneous malaria transmission and simultaneous malaria control interventions.MethodsThe study was conducted from 2018 to 2019 and is based on data taken every third year from 2005 to 2014 during a longitudinal parasitological and mosquito adult surveillance and malaria control programme that was initiated in 2002 in the villages of Kombewa, Iguhu, and Marani. Plasmodium spp. infections were determined using microscopy. Mosquito samples were identified to species and host blood meal source and sporozoite infections were assayed using polymerase chain reaction.ResultsPlasmodium falciparum was the only malaria parasite evaluated during this study (2018-2019). Asymptomatic malaria parasite prevalence in school children decreased in all sites from 2005 to 2008. However, since 2011, parasite prevalence has resurged by > 40% in Kombewa and Marani. Malaria vector densities showed similar reductions from 2005 to 2008 in all sites, rose steadily until 2014, and decreased again. Overall, Kombewa had a higher risk of infection compared to Iguhu (χ2 = 552.52, df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, P < 0.0001). There was a significant difference in probability of non-infection during malaria episodes (log-rank test, χ2 = 617.59, df = 2, P < 0.0001) in the study sites, with Kombewa having the least median time of non-infection during malaria episodes. Gender bias toward males in infection was observed (χ2 = 27.17, df = 1, P < 0.0001). The annual entomological inoculation rates were 5.12, 3.65, and 0.50 infective bites/person/year at Kombewa, Iguhu, and Marani, respectively, during 2018 to 2019.ConclusionsMalaria prevalence in western Kenya remains high and has resurged in some sites despite continuous intervention efforts. Targeting malaria interventions to those with asymptomatic infections who serve as human reservoirs might decrease malaria transmission and prevent resurgences. Longitudinal monitoring enables detection of changes in parasitological and entomological profiles and provides core baseline data for the evaluation of vector interventions and guidance for future planning of malaria control
    corecore