152 research outputs found

    High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes

    Get PDF
    The development of in vitro models to screen the effect of different concentrations, combinations and temporal sequences of morpho-regulatory factors on stem/progenitor cells is crucial to investigate and possibly recapitulate developmental processes with adult cells. Here, we designed and validated a microfluidic platform to (i) allow cellular condensation, (ii) culture 3D micromasses of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) under continuous flow perfusion, and (ii) deliver defined concentrations of morphogens to specific culture units. Condensation of hBM-MSCs was obtained within 3 hours, generating micromasses in uniform sizes (56.2 ± 3.9 μm). As compared to traditional macromass pellet cultures, exposure to morphogens involved in the first phases of embryonic limb development (i.e. Wnt and FGF pathways) yielded more uniform cell response throughout the 3D structures of perfused micromasses (PMMs), and a 34-fold higher percentage of proliferating cells at day 7. The use of a logarithmic serial dilution generator allowed to identify an unexpected concentration of TGFβ3 (0.1 ng/ml) permissive to hBM-MSCs proliferation and inductive to chondrogenesis. This proof-of-principle study supports the described microfluidic system as a tool to investigate processes involved in mesenchymal progenitor cells differentiation, towards a ‘developmental engineering’ approach for skeletal tissue regeneration

    High-throughput microfluidic platform for adherent single cells non-viral gene delivery

    Get PDF
    The widespread use of gene therapy as a therapeutic tool relies on the development of DNA-carrying vehicles devoid of any safety concerns. In contrast to viral vectors, non-viral gene carriers show promise in this perspective, although their low transfection efficiency leads to the necessity to carry out further optimizations. In order to overcome the limitations of traditional macroscale approaches, which mainly consist of time-consuming and simplified models, a microfluidic strategy has been developed to carry out transfection studies on single cells in a high-throughput and deterministic fashion. A single cell trapping mechanism has been implemented, based on the dynamic variation of fluidic resistances. For this purpose, we designed a round-shaped culture chamber integrated with a bottom trapping junction, which modulates the hydraulic resistance. Several layouts of the chamber were designed and computationally validated for optimization of the single cell trapping efficacy. The optimized chamber layout was integrated in a polydimethylsiloxane (PDMS) microfluidic platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a serial dilution generator with chaotic mixing properties, able to deliver to the chambers both soluble factors and non-diffusive particles (i.e., polymer/DNA complexes, polyplexes) under spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed the trapping of individual human glioblastoma–astrocytoma epithelial-like cells (U87-MG) with a trapping efficacy of about 40%. The cells were cultured within the device and underwent preliminary transfection experiments using 25 kDa linear polyethylenimine (lPEI)-based polyplexes, confirming the potentiality of the proposed platform for the future high-throughput screening of gene delivery vectors and for the optimization of transfection protocols

    LivHeart: A Multi Organ-on-Chip Platform to Study Off-Target Cardiotoxicity of Drugs Upon Liver Metabolism

    Get PDF
    The drug discovery and development process is still long, costly, and highly risky. The principal attrition factor is undetected toxicity, with hepatic and cardiac toxicities playing a critical role and being the main responsible of safety-related drug withdrawals from the market. Multi Organs-on-Chip (MOoC) represent a disruptive solution to study drug-related effects on several organs simultaneously and to efficiently predict drug toxicity in preclinical trials. Specifically focusing on drug safety, different technological features are applied here to develop versatile MOoC platforms encompassing two culture chambers for generating and controlling the type of communication between a metabolically competent liver model and a functional 3D heart model. The administration of the drug Terfenadine, a cardiotoxic compound liver-metabolized into the noncardiotoxic Fexofenadine, proved that liver metabolism and a fine control over drug diffusion are fundamental to elicit a physio-pathological cardiac response. From these results, an optimized LivHeart platform is developed to house a liver model and a cardiac construct that can be mechanically trained to achieve a beating microtissue, whose electrophysiology can be directly recorded in vitro. The platform is proved able to predict off-target cardiotoxicity of Terfenadine after liver metabolism both in terms of cell viability and functionality

    A clinical-in silico study on the effectiveness of multipoint bicathodic and cathodic-anodal pacing in cardiac resynchronization therapy.

    Get PDF
    Up to one-third of patients undergoing cardiac resynchronization therapy (CRT) are nonresponders. Multipoint bicathodic and cathodic-anodal left ventricle (LV) stimulations could overcome this clinical challenge, but their effectiveness remains controversial. Here we evaluate the performance of such stimulations through both in vivo and in silico experiments, the latter based on computer electromechanical modeling. Seven patients, all candidates for CRT, received a quadripolar LV lead. Four stimulations were tested: right ventricular (RVS); conventional single point biventricular (S-BS); multipoint biventricular bicathodic (CC-BS) and multipoint biventricular cathodic-anodal (CA-BS). The following parameters were processed: QRS duration; maximal time derivative of arterial pressure (dPdtmax); systolic arterial pressure (Psys); and stroke volume (SV). Echocardiographic data of each patient were then obtained to create an LV geometric model. Numerical simulations were based on a strongly coupled Bidomain electromechanical coupling model. Considering the in vivo parameters, when comparing S-BS to RVS, there was no significant decrease in SV (from 45 ± 11 to 44 ± 20 ml) and 6% and 4% increases of dPdtmax and Psys, respectively. Focusing on in silico parameters, with respect to RVS, S-BS exhibited a significant increase of SV, dPdtmax and Psys. Neither the in vivo nor in silico results showed any significant hemodynamic and electrical difference among S-BS, CC-BS and CA-BS configurations. These results show that CC-BS and CA-BS yield a comparable CRT performance, but they do not always yield improvement in terms of hemodynamic parameters with respect to S-BS. The computational results confirmed the in vivo observations, thus providing theoretical support to the clinical experiments

    Usefulness of the maggic score in predicting the competing risk of non-sudden death in heart failure patients receiving an implantable cardioverter-defibrillator: A sub-analysis of the observo-icd registry

    Get PDF
    The role of prognostic risk scores in predicting the competing risk of non-sudden death in heart failure patients with reduced ejection fraction (HFrEF) receiving an implantable cardioverterdefibrillator (ICD) is unclear. To this goal, we evaluated the accuracy and usefulness of the MetaAnalysis Global Group in Chronic Heart Failure (MAGGIC) score. The present analysis included 1089 HFrEF ICD recipients enrolled in the OBSERVO-ICD registry (NCT02735811). During a median follow-up of 36 months (1st\u20133rd IQR 25\u201348 months), 193 patients (17.7%) experienced at least one appropriate ICD therapy, and 133 patients died (12.2%) without experiencing any ICD therapy. The frequency of patients receiving ICD therapies was stable around 17\u201319% across increasing tertiles of 3-year MAGGIC probability of death, whereas non-sudden mortality increased (6.4% to 9.8% to 20.8%, p < 0.0001). Accuracy of MAGGIC score was 0.60 (95% CI, 0.56\u20130.64) for the overall outcome, 0.53 (95% CI, 0.49\u20130.57) for ICD therapies and 0.65 (95% CI, 0.60\u20130.70) for non-sudden death. In patients with higher 3-year MAGGIC probability of death, the increase in the competing risk of non-sudden death during follow-up was greater than that of receiving an appropriate ICD therapy. Results were unaffected when analysis was limited to ICD shocks only. The MAGGIC risk score proved accurate and useful in predicting the competing risk of non-sudden death in HFrEF ICD recipients. Estimation of mortality risk should be taken into greater consideration at the time of ICD implantation

    Influence of the atrio-ventricular delay optimization on the intra left ventricular delay in cardiac resynchronization therapy

    Get PDF
    BACKGROUND: Cardiac Resynchronization Therapy (CRT) leads to a reduction of left-ventricular dyssynchrony and an acute and sustained hemodynamic improvement in patients with chronic heart failure. Furthermore, an optimized AV-delay leads to an improved myocardial performance in pacemaker patients. The focus of this study is to investigate the acute effect of an optimized AV-delay on parameters of dyssynchrony in CRT patients. METHOD: 11 chronic heart failure patients with CRT who were on stable medication were included in this study. The optimal AV-delay was defined according to the method of Ismer (mitral inflow and trans-oesophageal lead). Dyssynchrony was assessed echocardiographically at three different settings: AVD(OPT); AVD(OPT)-50 ms and AVD(OPT)+50 ms. Echocardiographic assessment included 2D- and M-mode echo for the assessment of volumes and hemodynamic parameters (CI, SV) and LVEF and tissue Doppler echo (strain, strain rate, Tissue Synchronisation Imaging (TSI) and myocardial velocities in the basal segments) RESULTS: The AVD(OPT )in the VDD mode (atrially triggered) was 105.5 ± 38.1 ms and the AVD(OPT )in the DDD mode (atrially paced) was 186.9 ± 52.9 ms. Intra-individually, the highest LVEF was measured at AVD(OPT). The LVEF at AVD(OPT )was significantly higher than in the AVD(OPT-50)setting (p = 0.03). However, none of the parameters of dyssynchrony changed significantly in the three settings. CONCLUSION: An optimized AV delay in CRT patients acutely leads to an improved systolic left ventricular ejection fraction without improving dyssynchrony

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    Effectiveness of cardiac resynchronization therapy in heart failure patients with valvular heart disease: comparison with patients affected by ischaemic heart disease or dilated cardiomyopathy. The InSync/InSync ICD Italian Registry

    Get PDF
    AimsTo analyse the effectiveness of cardiac resynchronization therapy (CRT) in patients with valvular heart disease (a subset not specifically investigated in randomized controlled trials) in comparison with ischaemic heart disease or dilated cardiomyopathy patients.Methods and resultsPatients enrolled in a national registry were evaluated during a median follow-up of 16 months after CRT implant. Patients with valvular heart disease treated with CRT (n = 108) in comparison with ischaemic heart disease (n = 737) and dilated cardiomyopathy (n = 635) patients presented: (i) a higher prevalence of chronic atrial fibrillation, with atrioventricular node ablation performed in around half of the cases; (ii) a similar clinical and echocardiographic profile at baseline; (iii) a similar improvement of LVEF and a similar reduction in ventricular volumes at 6-12 months; (iv) a favourable clinical response at 12 months with an improvement of the clinical composite score similar to that occurring in patients with dilated cardiomyopathy and more pronounced than that observed in patients with ischaemic heart disease; (v) a long-term outcome, in term of freedom from death or heart transplantation, similar to patients affected by ischaemic heart disease and basically more severe than that of patients affected by dilated cardiomyopathy.ConclusionIn 'real world' clinical practice, CRT appears to be effective also in patients with valvular heart disease. However, in this group of patients the outcome after CRT does not precisely overlap any of the two other groups of patients, for which much more data are currently available
    corecore