148 research outputs found

    Unraveling a cavity induced molecular polarization mechanism from collective vibrational strong coupling

    Full text link
    We demonstrate that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarization effects in the thermodynamic limit. We do so by first showing that the full non-relativistic Pauli-Fierz problem of an ensemble of strongly-coupled molecules in the dilute-gas limit reduces in the cavity Born-Oppenheimer to a cavity-Hartree equation. Consequently, each molecule experiences a self-consistent coupling to the dipoles of all other molecules. In the thermodynamic limit, the sum of all molecular dipoles constitutes the macroscopic polarization field and the self-consistency then accounts for the delicate back-action on its heterogeneous microscopic constituents. The here derived cavity-Hartree equations allow for a computationally efficient implementation in an ab-initio molecular dynamics setting. For a randomly oriented ensemble of slowly rotating model molecules, we observe a red shift of the cavity resonance due to the polarization field, which is in agreement with experiments. We then demonstrate that the back-action on the local polarization takes a non-negligible value in the thermodynamic limit and hence the collective vibrational strong coupling can modify individual molecular properties locally. This is not the case, however, for dilute atomic ensembles, where room temperature does not induce any disorder and local polarization effects are absent. Our findings suggest that the thorough understanding of polaritonic chemistry, e.g. modified chemical reactions, requires self-consistent treatment of the cavity induced polarization and the usually applied restrictions to the displacement field effects may be insufficient

    Numerical modelling of radiant energy extinction by water medium containing bubbles and particles of various natures

    Get PDF
    In the framework of the Mie theory, we developed a numerical model of weakly absorbing medium, containing particles having an arbitrary chemical composition. This model can be applied to the study of the extinction characteristics of the optical radiation by a water layer with gas bubbles or volume-shape particles. The results of the numerical experiment illustrate changes in optical properties of the water due to the presence of bubbles or solid particles. The work displays some calculations of the extinction efficiency factor, the extinction coefficient, and transmission function at visible wavelengths. The influences of concentration and sizes of gas bubbles on the extinction characteristics of optical radiation are illustrated. Features of the extinction of radiant energy are discussed as dependent on a size parameter and a complex index of refraction of scatterers

    Variations of atmospheric methane supply from the Sea of Okhotsk unduced by the seasonal in cover

    Get PDF
    Measurements of dissolved methane in the surface waters of the western Sea of Okhotsk are evaluated in terms of methane exchange rates and are used to assess the magnitude of seasonal variations of methane fluxes from the ocean to the atmosphere in this area. Methane concentrations northeast of Sakhalin were observed to range from 385 nmol L−1 under the ice cover in winter to 6 nmol L−1 in the icefree midsummer season. The magnitude of supersaturations indicates that this part of the Okhotsk Sea is a significant source for atmospheric methane. From the seasonal variation of the supersaturations in the surface waters it is evident that the air-sea exchange is interrupted during the winter and methane from sedimentary sources accumulates under the ice cover. According to our measurements an initial early summer methane pulse into the atmosphere of the order of 560 mol km−2 d−1 can be expected when the supersaturated surface waters are exposed by the retreating ice. The methane flux in July is approximately 150 mol km−2 d−1 which is of the order of the average annual flux in the survey area. The magnitude of the seasonal CH4 flux variation northeast of Sakhalin corresponds to an amount of 7.3 × 105 g km−2 whereby 74% or 5.4 × 105 g km−2 are supplied to the atmosphere between April and July. For the whole Sea of Okhotsk the annual methane flux is roughly 0.13 × 1012 g (terragrams), based on the assumption that 15% of the entire area emit methane. Variations of long-term data of atmospheric methane which are recorded at the same latitude adjacent to areas with seasonal ice cover show a regional methane pulse between April and July. The large-scale level of atmospheric methane in the northern hemisphere undergoes an amplitudinal variation of about 25 parts per billion by volume (ppbv) which translates into approximately 36 Tg. Thus the estimated 0.6 Tg of ice-induced methane dynamics in northern latitudes can hardly explain this seasonal signal. However, the effects of seasonal ice cover on pulsed release of methane appear strong enough to contribute, in concert with other seasonal sources, to characteristic short-term wobbles in the atmospheric methane budget which are observed between 50°N and 60°N

    Mud volcanism and gas seeps in Lake Baikal: causes and consequences

    Get PDF
    After the discovery in 1999 of a series of mud volcanoes on the deep basin floors of Lake Baikal and of the presence of an anomalous thermally-mixed water layer attributed to methane venting, the lake floor was investigated in more detail in order to identify all possible sources of methane and to understand the processes leading to mud volcanism and methane release at the Baikal lake floor. New data show the presence of at least 4 mud volcano provinces, each consisting of several individual mud volcano structures, and of several areas of gas venting. All mud volcanoes occur in water depths of > 1000 m, within the GHSZ and in areas of abnormally shallow BSR, and are closely associated to large, active faults. They are attributed to hydrate destabilisation at the base of the GHSZ under the influence of a geothermal fluid pulse along the nearby fault. Methane release is not continuous (probably tectonically controlled; most mud volcanous are not active at present) and the source of methane is destabilising gas hydrates at 200-300 m subbottom depth. In addition, a whole series of methane vents (i.e. without distinct morphological expression) occur in shallower-water areas. These venting sites occur mostly in deltaic environments, but some are also associated with faults, and are always outside the GHSZ. Methane release appears to be more continuous (many are now active) and the source of the methane is probably shallow subsurface methane formed by the decomposition of organic matter, although deeper sources can not be excluded.Consequences of methane venting for the waters of Lake Baikal are the presence of a thermally-mixed water layer, wich could (if persisting and increasing in thickness) lead to a permanent stratification of the water column. This could influence the water mixing process and have major influences on the oxygenation of the lake and the benthic biota. In addition, increasing evidence is becoming available that some of these seeps may influence the water column (directly, or via associated temperature-driven circulation effects) up to the surface, causing localised melting or non-freezing of the winter-ice cover and even massive fish deaths. Measurements of surface-water and near-surface air methane concentrations are currently underway. The influence of the methane seeps (up to a few years not even suspected in the largest lake on Earth) on the entire lake system may thus be extremely important

    Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica

    Get PDF
    Measurements of CH4 concentrations in the bottom water during two discrete sampling periods in subsequent years above different cold seeps at the Pacific margin off Costa Rica indicate large-scale variations of CH4 release. CH4 is emitted from mud extrusions and a slide scar at 1000–2300 m water depth. Maximum CH4 concentrations were found to be lower above all investigated sites in autumn 2003 than in autumn 2002 although seep sites are up to 300 km apart. Tidal and current changes were observed but found to apply only to individual seep sites. Increased seismic activity connected to the moment magnitude (M W ) 6.4 earthquake offshore Costa Rica in June 2002 could have had an impact on all seep sites and thereby caused an increase in CH4 emission. This is supported by the largest variations of CH4 concentration found above mud extrusions located above faults likely more strongly affected by tectonic movements. Even though our data indicate a relation between seismicity and CH4 seepage, the relation is not proven, and future work is needed to comprehensively test this hypothesis

    Temporal variability of gas seeps offshore New Zealand: multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin

    Get PDF
    Cold seeps on Opouawe Bank, situated in around 1000 m water depth on the Hikurangi Margin offshore North Island. New Zealand, were investigated using multibeam bathymetry, 75 and 410 kHz sidescan sonar imagery, and 2–8 kHz Chirp sediment echosounder data. Towed video camera observations allowed ground-truthing the various geoacoustic data. At least eleven different seep locations displaying a range of seep activity were identified in the study area. The study area consists of an elongated, northward-widening ridge that is part of the accretionary Hikurangi Margin and is well separated from direct terrigenous input by margin channels surrounding the ridge. The geoacoustic signature of individual cold-seep sites ranged from smooth areas with slightly elevated backscatter intensity resulting from high gas content or the presence of near-surface gas hydrates, to rough areas with widespread patches of carbonates at the seafloor. Five cold seeps also show indications for active gas emissions in the form of acoustic plumes in the water column. Repeated sidescan sonar imagery of the plumes indicates they are highly variable in intensity and direction in the water column, probably reflecting the control of gas emission by tides and currents. Although gas emission appears strongly focused in the Wairarapa area, the actual extents of the cold seep structures are much wider in the subsurface as is shown by sediment echosounder profiles, where large gas fronts were observed

    Gasgeochemical indicators seismic activity

    No full text
    Laboratory of Gasgeochemistry of POI FEB RAS is studying gas distribution in lithosphere, hydrosphere and atmosphere from 1977 years. Method consist is sampling from its in expedition, take gas from samples of sediment, water and atmosphere to use method degassing and analysis gas in chromatograph, to measure CH4, C2-C4, O2, N2, H2, He and some time Rn. Gas is using like indicators to search oil-gas deposits, gas hydrate, mapping zones faults, to determine seismic activity, to calculate green house gas (CH4, CO2). The next geological, geophysics and hydro-acoustics characteristics assist which help to explain to form methane bubbles fluxes and gas hydrate in the Okhotsk Sea. The methane fluxes are mostly located in the zones faults and it increase in period seismic activity
    corecore