885 research outputs found

    Rapid biodiversity assessment of arthropods for monitoring average local species richness and related ecosystem services

    Get PDF
    Rapid biodiversity assessment (RBA) is proposed as an affordable indicator for monitoring local species richness of arthropods and sustainability of related ecosystem services. The indicator is based on strictly standardised sampling procedures and the identification of parataxonomic units (morphospecies) instead of species identification. The collection of arthropods was optimized with regard to trap types, time and length of collecting period, selection of four out of seven weekly samples, and choice of counted taxa and trophic guilds. By measuring arthropod activity, RBA is an indicator for functional diversity. Over a period of 8years, average yearly numbers of morphospecies were assessed in Switzerland in 15 agricultural habitats, 15 managed forests, and in 12 unmanaged habitats ranging from protected lowland wetlands to Alpine meadows. The yearly RBA-trend in unmanaged habitats is used for assessing the influence of climate and weather on biodiversity, and as a reference for measuring the relative influences of recent management changes in agriculture and forestry. The average number of morphospecies per sampling station per year depends on temperature, and was only marginally significantly increasing over time in agriculture, but not in forestry or unmanaged areas. Three RBA indices considered to be relevant for maintaining ecosystem services were calculated from the average number of morphospecies per location per year: (1) indicator for ecological resilience and sustainability (all morphospecies); (2) indicator for pollinator diversity (taxa with a majority of pollinators) and (3) indicator for biocontrol diversity (ratio between carnivore and herbivore guilds

    Realizing live sequence charts in SystemVerilog.

    Get PDF
    The design of an embedded control system starts with an investigation of properties and behaviors of the process evolving within its environment, and an analysis of the requirement for its safety performance. In early stages, system requirements are often specified as scenarios of behavior using sequence charts for different use cases. This specification must be precise, intuitive and expressive enough to capture different aspects of embedded control systems. As a rather rich and useful extension to the classical message sequence charts, live sequence charts (LSC), which provide a rich collection of constructs for specifying both possible and mandatory behaviors, are very suitable for designing an embedded control system. However, it is not a trivial task to realize a high-level design model in executable program codes effectively and correctly. This paper tackles the challenging task by providing a mapping algorithm to automatically synthesize SystemVerilog programs from given LSC specifications

    The how and why behind a multisensory art display

    Get PDF
    Designing multisensory experiences has always fascinated artists and scientists alike. In recent years, there has been a growing interest in multisensory experience design within the HCI community [1]. Next to advances in haptic technologies, we see novel work on olfactory and gustatory systems [2,3] and efforts in determining multisensory design spaces [4]. Moreover, artists, museum curators, and creative industries are interested in those emerging technologies for their own work. Here we present Tate Sensorium, a multisensory art display, as an example case for multisensory design

    I'm sensing in the rain: Spatial incongruity in visual-tactile mid-air stimulation can elicit ownership in VR users

    Get PDF
    Major virtual reality (VR) companies are trying to enhance the sense of immersion in virtual environments by implementing haptic feedback in their systems (e.g., Oculus Touch). It is known that tactile stimulation adds realism to a virtual environment. In addition, when users are not limited by wearing any attachments (e.g., gloves), it is even possible to create more immersive experiences. Mid-air haptic technology provides contactless haptic feedback and offers the potential for creating such immersive VR experiences. However, one of the limitations of mid-air haptics resides in the need for freehand tracking systems (e.g., Leap Motion) to deliver tactile feedback to the user's hand. These tracking systems are not accurate, limiting designers capability of delivering spatially precise tactile stimulation. Here, we investigated an alternative way to convey incongruent visual-tactile stimulation that can be used to create the illusion of a congruent visual-tactile experience, while participants experience the phenomenon of the rubber hand illusion in VR

    OWidgets: A toolkit to enable smell-based experience design

    Get PDF
    Interactive technologies are transforming the ways in which people experience, interact and share information. Advances in technology have made it possible to generate real and virtual environments with breath-taking graphics and high-fidelity audio. However, without stimulating the other senses such as touch and smell, and even taste in some cases, such experiences feel hollow and fictitious; they lack realism. One of the main stumbling blocks for progress towards creating truly compelling multisensory experiences is the lack of appropriate tools and guidance for designing beyond audio-visual applications. Here we focus particularly on the sense of smell and how smell-based design can be enabled to create novel user experiences. We present a design toolkit for smell (i.e., OWidgets). The toolkit consists of a graphical user interface and the underlying software framework. The framework uses two main components: a Mapper and Scheduler facilitating the device-independent replication of olfactory experiences. We discuss how our toolkit reduces the complexity of designing with smell and enables a creative exploration based on specific design features. We conclude by reflecting on future directions to extend the toolkit and integrate it into the wider audio-visual ecosystem

    “Sweet: I did it”! Measuring the sense of agency in gustatory interfaces

    Get PDF
    Novel gustatory interfaces offer the potential to use the sense of taste as a feedback modality during the interaction. They are being explored in a wide range of implementations, from chemical to electrical and thermal stimulation of taste. However, the fundamental aspect of gustatory interaction that has yet to be explored is the Sense of Agency (SoA). It is the subjective experience of voluntary control over actions in the external world. This work investigates the SoA in gustatory systems using the intentional binding paradigm to quantify how different taste outcome modalities influence users' SoA. We first investigate such gustatory systems using the intentional binding paradigm to quantify how different tastes influence users' SoA (Experiment 1). The gustatory stimuli were sweet (sucrose 75.31 mg/ml), bitter (caffeine powder 0.97 mg/ml), and neutral (mineral water) as the outcomes of specific keyboard presses. We then investigated how SoA was altered depending on users' sweet liking phenotype, given that sweet is one of the taste outcomes (Experiment 2), and in contrast with audio as a traditional outcome. In Experiment 2, stronger taste concentrations (sweet-sucrose 342.30 g/L, bitter-quinine 0.1 g/L, and neutral) were used, with only participants being moderate sweet likers. We further contrasted tastes with audio as the traditional outcome. Our findings show that all three taste outcomes exhibit similar intentional binding compared to auditory in medium sweet likers. We also show that longer action-outcome duration improved the SoA. We finally discuss our findings and identify design opportunities considering SoA for gustatory interfaces and multisensory interaction

    Advantages and Disadvantages of Techniques for Transforming and Analyzing Chiropteran Echolocation Calls

    Get PDF
    Bat researchers currently use a variety of techniques that transform echolocation calls into audible frequencies and allow the spectral content of a signal to be viewed and analyzed. All techniques have limitations and an understanding of how each works and the effect on the signal being analyzed are vital for correct interpretation. The 3 most commonly used techniques for transforming frequencies of a call are heterodyne, frequency division, and time expansion. Three techniques for viewing spectral content of a signal are zero-crossing, Fourier analysis, and instantaneous frequency analysis. It is important for bat researchers to be familiar with the advantages and disadvantages of each techniqu

    Response of arthropod species richness and functional groups to urban habitat structure and management

    Get PDF
    Urban areas are a particular landscape matrix characterized by a fine-grained spatial arrangement of very diverse habitats (urban mosaic). We investigated arthropods to analyse biodiversity-habitat associations along five environmental gradients (age, impervious area, management, configuration, composition) in three Swiss cities (96 study sites). We considered total species richness and species richness within different functional groups (zoophagous, phytophagous, pollinator, low mobility, and high mobility species). Information theoretical model selection procedures were applied and predictions were calculated based on weighted models. Urban areas yielded on average 284 arthropod species (range: 169-361), with species richness correlating mostly with heterogeneity indices (configuration and composition). Species richness also increased with age of urban settlement, while enlarged proportions of impervious area and intensified habitat management was negatively correlated. Functional groups showed contrasted, specific responses to environmental variables. Overall, we found surprisingly little variation in species richness along the gradients, which is possibly due to the fine-grained spatial interlinkage of good (heterogeneous) and bad (sealed) habitats. The highly fragmented nature of urban areas may not represent a major obstacle for the arthropods currently existing in cities because they have probably been selected for tolerance to fragmentation and for high colonisation potential. Given that built areas are becoming denser, increasing spatial heterogeneity of the urban green offers potential for counteracting the detrimental effects of densification upon urban biodiversity. By quantifying the expected effects along environmental gradients, this study provides guidance for managers to set priorities when enhancing urban arthropod species richnes
    corecore