research

Response of arthropod species richness and functional groups to urban habitat structure and management

Abstract

Urban areas are a particular landscape matrix characterized by a fine-grained spatial arrangement of very diverse habitats (urban mosaic). We investigated arthropods to analyse biodiversity-habitat associations along five environmental gradients (age, impervious area, management, configuration, composition) in three Swiss cities (96 study sites). We considered total species richness and species richness within different functional groups (zoophagous, phytophagous, pollinator, low mobility, and high mobility species). Information theoretical model selection procedures were applied and predictions were calculated based on weighted models. Urban areas yielded on average 284 arthropod species (range: 169-361), with species richness correlating mostly with heterogeneity indices (configuration and composition). Species richness also increased with age of urban settlement, while enlarged proportions of impervious area and intensified habitat management was negatively correlated. Functional groups showed contrasted, specific responses to environmental variables. Overall, we found surprisingly little variation in species richness along the gradients, which is possibly due to the fine-grained spatial interlinkage of good (heterogeneous) and bad (sealed) habitats. The highly fragmented nature of urban areas may not represent a major obstacle for the arthropods currently existing in cities because they have probably been selected for tolerance to fragmentation and for high colonisation potential. Given that built areas are becoming denser, increasing spatial heterogeneity of the urban green offers potential for counteracting the detrimental effects of densification upon urban biodiversity. By quantifying the expected effects along environmental gradients, this study provides guidance for managers to set priorities when enhancing urban arthropod species richnes

    Similar works