23 research outputs found

    A non trivial extension of the two-dimensional Ising model: the d-dimensional "molecular" model

    Full text link
    A recently proposed molecular model is discussed as a non-trivial extension of the Ising model. For d=2 the two models are shown to be equivalent, while for d>2 the molecular model describes a peculiar second order transition from an isotropic high temperature phase to a low-dimensional anisotropic low temperature state. The general mean field analysis is compared with the results achieved by a variational Migdal-Kadanoff real space renormalization group method and by standard Monte Carlo sampling for d=3. By finite size scaling the critical exponent has been found to be 0.44\pm 0.02 thus establishing that the molecular model does not belong to the universality class of the Ising model for d>2.Comment: 25 pages, 5 figure

    Marine macroalgae as food for earthworms: Growth and selection experiments across ecotypes

    Get PDF
    Historically, subsistence farmers around the Atlantic coast of NW Europe utilised marine algae as a fertiliser in agroecosystems, a practice that continued in small areas and is now considered to have real potential for re-establishing sustainable food production systems on marginal soils. Earthworms form a significant component of soil fauna and their ecosystem services are well documented. Therefore, palatability of marine organic amendments to faunal detritivores of terrestrial systems is of interest. This work aimed to assess the potential for growth of Aporrectodea caliginosa, Lumbricus rubellus and Aporrectodea longa fed with two common macroalgae (seaweeds), Laminaria digitata and Fucus serratus. In addition, choice chambers were constructed to permit earthworm selection of these macroalgae with more conventional organic materials, horse manure (HM) and birch leaves (BL). Over a period of two months, earthworm species showed significantly greater mass gain with conventional food (p<0.05). Laminaria outperformed Fucus, which in turn was superior to soil alone. Similarly, when given a choice, a significant preference (p<0.001) was shown for the more nitrogen-rich HM and BL over the seaweeds. No removal was recorded for A. caliginosa when offered seaweeds only. By contrast, L. rubellus and A. longa showed significant preferences (p<0.001) for Laminaria over Fucus and fresh material over degraded. These results underline an interest to profit from natural resources (seaweeds) to maintain or improve soil biological quality in marginal coastal areas

    Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology

    Get PDF
    A recent genome-wide association meta-analysis for Alzheimer's disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of >6000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. These data indicate that PTK2B acts as an early marker and in vivo modulator of Tau toxicity

    Mis-splicing of Tau exon 10 in myotonic dystrophy type I is reproduced by overexpression of CELF2 but not by MBNL1 silencing

    Get PDF
    International audienceTau is the proteinaceous component of intraneuronal aggregates common to neurodegenerative diseases called Tauopathies, including myotonic dystrophy type I (DM1). In DM1, the presence of microtubule-associated protein Tau aggregates is associated with a mis-splicing of Tau. A toxic gain-of-function at the RNA level is a major etiological factor responsible for the mis-splicing of several transcripts in DM1. These are probably the consequence of a loss of MBNL1 function or gain of CELF1 splicing function. Whether these two dysfunctions occur together or separately, and whether all mis-splicing events in DM1 brain result from one or both of these dysfunctions remains unknown. Here, we analyzed the splicing of Tau exons 2 and 10 in the brain of DM1 patients. Two DM1 patients showed a mis-splicing of exon 10 whereas exon 2-inclusion was reduced in all DM1 patients. In order to determine the potential factors responsible for exon 10 mis-splicing, we studied the effect of the splicing factors MBNL1, CELF1, CELF2 and CELF4 or a dominant-negative CELF factor on Tau exon 10 splicing by ectopic expression or siRNA. Interestingly, the inclusion of Tau exon 10 is reduced by CELF2 whereas it is insensitive to the loss-of-function of MBNL1, CELF1 gain-of-function or a dominant-negative of CELF factor. Moreover, we observed an increased expression of CELF2 only in the brain of DM1 patients with a mis-splicing of exon 10. Taken together, our results indicate the occurrence of a mis-splicing event in DM1 that is neither induced by a loss of MBNL1 function nor a gain of CELF1 function, but is rather associated to CELF2 gain-of-function
    corecore