50 research outputs found

    Plasma Activated Synthesis of Macromolecular Compound

    Get PDF
    The paper is devoted to study of the plasma-activated synthesis of organic compounds with optically activity. Synthesis was carried out in plasma-liquid system with a rotating gliding discharge submerged in a liquid. The initial reagents of synthesis were ethanol, ammonia, and CO2. The possibility of the influence of the electric field direction on the optical activity of the products of plasma-activated synthesis is shown

    Borophosphosilicate glass component analysis using secondary neutral mass spectrometry

    No full text
    In the present study the SNMS technique for the quantitative component analysis of the borophosphosilicate glass layers was used. These layers were deposited on the silicon substrate by chemical vapor deposition method. The charge-up of the surface is compensated by plasma gas electrons in the high frequency mode sputtering. It is shown that modes of such sputtering significantly influence on the macro- and microrelief of the crater during the process of the depth component distribution analysis. An on-off time ratio change of the voltage applied to the sample results in changing the crater shape. At the same time the increase of the sputtering frequency results in appearance of thin protrusions at the crater bottom. Improvement of the depth resolution requires optimization both on-off time ratio and frequency of voltage applied to the sample

    Institute of Semiconductor Physics, National Academy of Sciences of Ukraine Semiconductor Physics, Quantum Electronics & Optoelectronics

    No full text
    Abstract. In the present study the SNMS technique for the quantitative component analysis of the borophosphosilicate glass layers was used. These layers were deposited on the silicon substrate by chemical vapor deposition method. The charge-up of the surface is compensated by plasma gas electrons in the high frequency mode sputtering. It is shown that modes of such sputtering significantly influence on the macro-and microrelief of the crater during the process of the depth component distribution analysis. An on-off time ratio change of the voltage applied to the sample results in changing the crater shape. At the same time the increase of the sputtering frequency results in appearance of thin protrusions at the crater bottom. Improvement of the depth resolution requires optimization both on-off time ratio and frequency of voltage applied to the sample

    Borophosphosilicate glass component analysis using secondary neutral mass spectrometry

    No full text

    Formation of silicon nanoclusters in buried ultra-thin oxide layers

    No full text

    AES and XPS characterization of TiN layers formed and modified by ion implantation

    No full text
    Compositional characterization of sputtered and implanted titanium nitride (TiN) layers for microelectronics application is performed based on Auger Electron Spectroscopy (AES) and X-ray induced Photoelectron Spectroscopy (XPS) data. AES shows a strong overlapping of the most intensive peaks of Ti and N. A simple empirical method using intensity relations of Auger spectra is developed for quick estimation of layer composition in small areas. Defined modification of the TiN layers was realized by means of carbon and oxygen implantation to study their influence on quantitative analysis. In difference to standard AES analysis the results of quantification using the method proposed are found to be in good agreement with XPS profiles and with results from Principal Component Analysis (PCA), where peak overlapping is excluded. The influence of oxygen was found to be crucial for standard AES analysis but it could be taken into account in the proposed method. High carbon concentrations show no significant influence on the Ti and N peak shapes
    corecore