22 research outputs found

    Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex

    Get PDF
    AbstractCerebellar long-term depression (LTD) is a model system for neuronal information storage that has an absolute requirement for activation of protein kinase C (PKC). It has been claimed to underlie several forms of cerebellar motor learning. Previous studies using various knockout mice (mGluR1, GluRδ2, glial fibrillary acidic protein) have supported this claim; however, this work has suffered from the limitations that the knockout technique lacks anatomical specificity and that functional compensation can occur via similar gene family members. To overcome these limitations, a transgenic mouse (called L7-PKCI) has been produced in which the pseudosubstrate PKC inhibitor, PKC[19–31], was selectively expressed in Purkinje cells under the control of the pcp-2(L7) gene promoter. Cultured Purkinje cells prepared from heterozygous or homozygous L7-PKCI embryos showed a complete blockade of LTD induction. In addition, the compensatory eye movements of L7-PKCI mice were recorded during vestibular and visual stimulation. Whereas the absolute gain, phase, and latency values of the vestibulo-ocular reflex and optokinetic reflex of the L7-PKCI mice were normal, their ability to adapt their vestibulo-ocular reflex gain during visuo-vestibular training was absent. These data strongly support the hypothesis that activation of PKC in the Purkinje cell is necessary for cerebellar LTD induction, and that cerebellar LTD is required for a particular form of motor learning, adaptation of the vestibulo-ocular reflex

    Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells

    Get PDF
    Background: Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results: During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion: Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons

    Biased Opioid Antagonists as Modulators of Opioid Dependence: Opportunities to Improve Pain Therapy and Opioid Use Management

    No full text
    Opioid analgesics are effective pain therapeutics but they cause various adverse effects and addiction. For safer pain therapy, biased opioid agonists selectively target distinct μ opioid receptor (MOR) conformations, while the potential of biased opioid antagonists has been neglected. Agonists convert a dormant receptor form (MOR-μ) to a ligand-free active form (MOR-μ*), which mediates MOR signaling. Moreover, MOR-μ converts spontaneously to MOR-μ* (basal signaling). Persistent upregulation of MOR-μ* has been invoked as a hallmark of opioid dependence. Contrasting interactions with both MOR-μ and MOR-μ* can account for distinct pharmacological characteristics of inverse agonists (naltrexone), neutral antagonists (6β-naltrexol), and mixed opioid agonist-antagonists (buprenorphine). Upon binding to MOR-μ*, naltrexone but not 6β-naltrexol suppresses MOR-μ*signaling. Naltrexone blocks opioid analgesia non-competitively at MOR-μ*with high potency, whereas 6β-naltrexol must compete with agonists at MOR-μ, accounting for ~100-fold lower in vivo potency. Buprenorphine’s bell-shaped dose–response curve may also result from opposing effects on MOR-μ and MOR-μ*. In contrast, we find that 6β-naltrexol potently prevents dependence, below doses affecting analgesia or causing withdrawal, possibly binding to MOR conformations relevant to opioid dependence. We propose that 6β-naltrexol is a biased opioid antagonist modulating opioid dependence at low doses, opening novel avenues for opioid pain therapy and use management

    Association and Colocalization of G Protein α Subunits and Purkinje Cell protein 2 (Pcp2) in Mammalian Cerebellum

    No full text
    Previously, we have demonstrated a novel interaction between Gαo protein and Purkinje cell protein‐2 (Pcp2, also known as L7) in vitro and in transfected cells (Luo and Denker [1999] J. Biol. Chem. 274:10685–10688). Pcp2 is uniquely expressed in cerebellar Purkinje cells and in retinal bipolar neurons, and it may function as a cell‐type specific modulator for G protein‐mediated cell signaling. This interaction has been further evaluated in the present studies. Coimmunoprecipitation experiments reveal that Pcp2 associates with Gαo in vivo in mouse cerebellum and eye extract. Pcp2 also associate with Gαi2 in the cerebellum. No detectable associations of Pcp2 with Gαz and Gαq subunits are observed. The association of Gαo and Pcp2 is detected at postnatal day 1 (P1), and the association remains stable from day 3 (P3) until adulthood. Further, immunofluorescent double labeling and confocal microscopy suggest that Pcp2 and Gαo are colocalized in the distal processes of cerebellar Purkinje cells including axonal endings and dendritic spines. Taken together, these findings indicate colocalization and association of Gαo and Pcp2 in cerebellum and suggest a functional role in regions of synaptic activity. © 2002 Wiley‐Liss, Inc

    Engrailed-2 regulates genes related to vesicle formation and transport in cerebellar Purkinje cells

    Get PDF
    Engrailed transcription factors regulate survival, cell fate decisions and axon pathfinding in central neurons. En-2 can also attenuate Purkinje cell (PC) maturation. Here, we use array analysis to scrutinize gene expression in developing PCs overexpressing Engrailed-2 (L7En-2). The majority (70%) of regulated genes was found down-regulated in L7En-2 cerebella, consistent with the known repressive function of Engrailed-2. Differential gene expression, verified by in situ hybridization or Western blotting, was particularly evident during the first postnatal week, when L7En-2 PCs display conspicuous deficits in dendritogenesis. Functional classification revealed clusters of genes linked to vesicle formation and transport. Consistently, Golgi stacks located at the axonal pole of wild type PC somata were rarely detected in L7En-2 PCs. In addition, long continuous stretches of endoplasmic reticulum typically found around the axonal pole of wild type PCs were less frequently observed in transgenic cells. Engrailed-2 might therefore orchestrate PC survival and process formation as a regulator of subcellular organization
    corecore