12 research outputs found

    Increased Default Mode Network Connectivity in Obsessive-Compulsive Disorder During Reward Processing

    Get PDF
    Objective: Obsessive-compulsive disorder (OCD) is characterized by anxiety-provoking, obsessive thoughts (i.e., obsessions) which patients react to with compulsive behaviors (i.e., compulsions). Due to the transient feeling of relief following the reduction of obsession-induced anxiety, compulsions are often described as relieving or even rewarding. Several studies investigated functional activation during reward processing in OCD, but findings are heterogeneous up to now and little is known about potential alterations in functional connectivity. Method: Against this background we studied OCD patients (n=44) and healthy controls (n=37) during the receipt ofmonetary reward by assessing both activation and functional connectivity. Results: Patients showed a decreased activation in several frontal regions and the posterior cingulate (PCC, BA31) together with a stronger connectivity between the PCC and the vmPFC (BA10). Conclusion: Present findings demonstrate an increased connectivity in patients within major nodes of the default mode network (DMN)-a network known to be involved in the evaluation of internal mental states. These results may indicate an increased activity of internal, self-related processing at the expense of a normal responsiveness toward external rewards and incentives. This, in turn, may explain the constant urge for additional reinforcement and patients' inability to inhibit their compulsive behaviors

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Increased Default Mode Network Connectivity in Obsessive–Compulsive Disorder During Reward Processing

    No full text
    Objective: Obsessive-compulsive disorder (OCD) is characterized by anxiety-provoking, obsessive thoughts (i.e., obsessions) which patients react to with compulsive behaviors (i.e., compulsions). Due to the transient feeling of relief following the reduction of obsession-induced anxiety, compulsions are often described as relieving or even rewarding. Several studies investigated functional activation during reward processing in OCD, but findings are heterogeneous up to now and little is known about potential alterations in functional connectivity.Method: Against this background we studied OCD patients (n = 44) and healthy controls (n = 37) during the receipt of monetary reward by assessing both activation and functional connectivity.Results: Patients showed a decreased activation in several frontal regions and the posterior cingulate (PCC, BA31) together with a stronger connectivity between the PCC and the vmPFC (BA10).Conclusion: Present findings demonstrate an increased connectivity in patients within major nodes of the default mode network (DMN)—a network known to be involved in the evaluation of internal mental states. These results may indicate an increased activity of internal, self-related processing at the expense of a normal responsiveness toward external rewards and incentives. This, in turn, may explain the constant urge for additional reinforcement and patients' inability to inhibit their compulsive behaviors

    Neural Correlates of Stepping in Healthy Elderly: Parietal and Prefrontal Cortex Activation Reflects Cognitive-Motor Interference Effects

    Get PDF
    Gait analysis involving cognitive-motor dual task (DT) is a diagnostic tool in geriatrics. Cognitive-motor interference effects during DT, such as decreased walking speed and increased step-to-step variability, have a high predictive value for fall risk and cognitive decline. Previously we showed the feasibility of DT during functional magnetic resonance imaging (fMRI) using an MRI-compatible stepping device. Here, we improved the DT-fMRI protocol with respect to task difficulty and signal robustness, making it more suitable for individualized analysis to better understand the neuronal substrates of cognitive-motor interference effects. Thirty healthy elderly subjects performed cognitive and motor single tasks (ST; stepping or finger tapping), as well as combined cognitive-motor DT during fMRI. After whole brain group level analysis, a region-of-interest (ROI) analysis and the computation of dual task costs (DTC = activation difference ratio ST/DT) at individual level were performed. Activations in the primary (M1) and secondary motor as well as in parietal and prefrontal cortex were measured at the group level during DT. Motor areas showed decreased activation whereas parietal and prefrontal areas showed increased activation in DT vs. ST. Stepping yielded more distinctive activations in DT vs. ST than finger tapping. At the individual level, the most robust activations (based on occurrence probability and signal strength) were measured in the stepping condition, in M1, supplementary motor area (SMA) and superior parietal lobule/intraparietal sulcus (SPL/IPS). The distribution of individual DTC in SPL/IPS during stepping suggested a separation of subjects in groups with high vs. low DTC. This study proposes an improved cognitive-motor DT-fMRI protocol and a standardized analysis routine of functional neuronal markers for cognitive-motor interference at the individual level

    Image_1_Increased Default Mode Network Connectivity in Obsessive–Compulsive Disorder During Reward Processing.JPEG

    No full text
    <p>Objective: Obsessive-compulsive disorder (OCD) is characterized by anxiety-provoking, obsessive thoughts (i.e., obsessions) which patients react to with compulsive behaviors (i.e., compulsions). Due to the transient feeling of relief following the reduction of obsession-induced anxiety, compulsions are often described as relieving or even rewarding. Several studies investigated functional activation during reward processing in OCD, but findings are heterogeneous up to now and little is known about potential alterations in functional connectivity.</p><p>Method: Against this background we studied OCD patients (n = 44) and healthy controls (n = 37) during the receipt of monetary reward by assessing both activation and functional connectivity.</p><p>Results: Patients showed a decreased activation in several frontal regions and the posterior cingulate (PCC, BA31) together with a stronger connectivity between the PCC and the vmPFC (BA10).</p><p>Conclusion: Present findings demonstrate an increased connectivity in patients within major nodes of the default mode network (DMN)—a network known to be involved in the evaluation of internal mental states. These results may indicate an increased activity of internal, self-related processing at the expense of a normal responsiveness toward external rewards and incentives. This, in turn, may explain the constant urge for additional reinforcement and patients' inability to inhibit their compulsive behaviors.</p

    Image_2_Increased Default Mode Network Connectivity in Obsessive–Compulsive Disorder During Reward Processing.JPEG

    No full text
    <p>Objective: Obsessive-compulsive disorder (OCD) is characterized by anxiety-provoking, obsessive thoughts (i.e., obsessions) which patients react to with compulsive behaviors (i.e., compulsions). Due to the transient feeling of relief following the reduction of obsession-induced anxiety, compulsions are often described as relieving or even rewarding. Several studies investigated functional activation during reward processing in OCD, but findings are heterogeneous up to now and little is known about potential alterations in functional connectivity.</p><p>Method: Against this background we studied OCD patients (n = 44) and healthy controls (n = 37) during the receipt of monetary reward by assessing both activation and functional connectivity.</p><p>Results: Patients showed a decreased activation in several frontal regions and the posterior cingulate (PCC, BA31) together with a stronger connectivity between the PCC and the vmPFC (BA10).</p><p>Conclusion: Present findings demonstrate an increased connectivity in patients within major nodes of the default mode network (DMN)—a network known to be involved in the evaluation of internal mental states. These results may indicate an increased activity of internal, self-related processing at the expense of a normal responsiveness toward external rewards and incentives. This, in turn, may explain the constant urge for additional reinforcement and patients' inability to inhibit their compulsive behaviors.</p

    Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium : medication matters

    Get PDF
    No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker
    corecore