39 research outputs found

    Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina

    Get PDF
    In the trichromatic primate retina, the “midget” retinal ganglion cell is the classical substrate for red–green color signaling, with a circuitry that enables antagonistic responses between long (L)- and medium (M)-wavelength-sensitive cone inputs. Previous physiological studies showed that some OFF midget ganglion cells may receive sparse input from short (S)-wavelength-sensitive cones, but the effect of S-cone inputs on the chromatic tuning properties of such cells has not been explored. Moreover, anatomical evidence for a synaptic pathway from S cones to OFF midget ganglion cells through OFF midget bipolar cells remains ambiguous. In this study, we address both questions for the macaque monkey retina. First, we used serial block-face electron microscopy to show that every S cone in the parafoveal retina synapses principally with a single OFF midget bipolar cell, which in turn forms a private-line connection with an OFF midget ganglion cell. Second, we used patch electrophysiology to characterize the chromatic tuning of OFF midget ganglion cells in the near peripheral retina that receive combined input from L, M, and S cones. These “S-OFF” midget cells have a characteristic S-cone spatial signature, but demonstrate heterogeneous color properties due to the variable strength of L, M, and S cone input across the receptive field. Together, these findings strongly support the hypothesis that the OFF midget pathway is the major conduit for S-OFF signals in primate retina and redefines the pathway as a chromatically complex substrate that encodes color signals beyond the classically recognized L versus M and S versus L+M cardinal mechanisms

    Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina

    Get PDF
    In primate retina, “red-green” color coding is initiated when signals originating in long (L) and middle (M) wavelength-sensitive cone photoreceptors interact antagonistically. The center-surround receptive field of “midget” ganglion cells provides the neural substrate for L versus M cone-opponent interaction, but the underlying circuitry remains unsettled, centering around the longstanding question of whether specialized cone wiring is present. To address this question, we measured the strength, sign, and spatial tuning of L- and M-cone input to midget receptive fields in the peripheral retina of macaque primates of either sex. Consistent with previous work, cone opponency arose when one of the cone types showed a stronger connection to the receptive field center than to the surround. We implemented a difference-of-Gaussians spatial receptive field model, incorporating known biology of the midget circuit, to test whether physiological responses we observed in real cells could be captured entirely by anatomical nonselectivity. When this model sampled nonselectively from a realistic cone mosaic, it accurately reproduced key features of a cone-opponent receptive field structure, and predicted both the variability and strength of cone opponency across the retina. The model introduced here is consistent with abundant anatomical evidence for nonselective wiring, explains both local and global properties of the midget population, and supports a role in their multiplexing of spatial and color information. It provides a neural basis for human chromatic sensitivity across the visual field, as well as the maintenance of normal color vision despite significant variability in the relative number of L and M cones across individuals

    Evolution of Taxis Responses in Virtual Bacteria: Non-Adaptive Dynamics

    Get PDF
    Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics mediating taxis responses provide an explanation for experimental observations made in mutant strains of E. coli and in wild-type Rhodobacter sphaeroides that could not be explained with standard models. We speculate that such dynamics exist in other bacteria as well and play a role linking the metabolic state of the cell and the taxis response. The simplicity of mechanisms mediating such dynamics makes them a candidate precursor of more complex taxis responses involving adaptation. This study suggests a strong link between stimulus conditions during evolution and evolved pathway dynamics. When evolution was simulated under conditions of scarce and fluctuating stimulus conditions, the evolved pathway contained features of both adaptive and non-adaptive dynamics, suggesting that these two types of dynamics can have different advantages under distinct environmental circumstances

    Evolution of response dynamics underlying bacterial chemotaxis

    Get PDF
    Š 2011 Soyer and Goldstein; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The ability to predict the function and structure of complex molecular mechanisms underlying cellular behaviour is one of the main aims of systems biology. To achieve it, we need to understand the evolutionary routes leading to a specific response dynamics that can underlie a given function and how biophysical and environmental factors affect which route is taken. Here, we apply such an evolutionary approach to the bacterial chemotaxis pathway, which is documented to display considerable complexity and diversity.Results: We construct evolutionarily accessible response dynamics starting from a linear response to absolute levels of attractant, to those observed in current-day Escherichia coli. We explicitly consider bacterial movement as a two-state process composed of non-instantaneous tumbling and swimming modes. We find that a linear response to attractant results in significant chemotaxis when sensitivity to attractant is low and when time spent tumbling is large. More importantly, such linear response is optimal in a regime where signalling has low sensitivity. As sensitivity increases, an adaptive response as seen in Escherichia coli becomes optimal and leads to 'perfect' chemotaxis with a low tumbling time. We find that as tumbling time decreases and sensitivity increases, there exist a parameter regime where the chemotaxis performance of the linear and adaptive responses overlap, suggesting that evolution of chemotaxis responses might provide an example for the principle of functional change in structural continuity.Conclusions: Our findings explain several results from diverse bacteria and lead to testable predictions regarding chemotaxis responses evolved in bacteria living under different biophysical constraints and with specific motility machinery. Further, they shed light on the potential evolutionary paths for the evolution of complex behaviours from simpler ones in incremental fashion

    A multivariate analysis of serum nutrient levels and lung function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting evidence that estimates of intakes of a range of dietary nutrients are related to both lung function level and rate of decline, but far less evidence on the relation between lung function and objective measures of serum levels of individual nutrients. The aim of this study was to conduct a comprehensive examination of the independent associations of a wide range of serum markers of nutritional status with lung function, measured as the one-second forced expiratory volume (FEV<sub>1</sub>).</p> <p>Methods</p> <p>Using data from the Third National Health and Nutrition Examination Survey, a US population-based cross-sectional study, we investigated the relation between 21 serum markers of potentially relevant nutrients and FEV<sub>1</sub>, with adjustment for potential confounding factors. Systematic approaches were used to guide the analysis.</p> <p>Results</p> <p>In a mutually adjusted model, higher serum levels of antioxidant vitamins (vitamin A, beta-cryptoxanthin, vitamin C, vitamin E), selenium, normalized calcium, chloride, and iron were independently associated with higher levels of FEV<sub>1</sub>. Higher concentrations of potassium and sodium were associated with lower FEV<sub>1</sub>.</p> <p>Conclusion</p> <p>Maintaining higher serum concentrations of dietary antioxidant vitamins and selenium is potentially beneficial to lung health. In addition other novel associations found in this study merit further investigation.</p

    Comparison of omapatrilat and enalopril in patients with chronic heart failure:The Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE)

    No full text
    Background— Combined inhibition of the angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) may produce greater benefits in heart failure than ACE inhibition alone.&lt;p&gt;&lt;/p&gt; Methods and Results— We randomly assigned 5770 patients with New York Heart Association class II to IV heart failure to double-blind treatment with either the ACE inhibitor enalapril (10 mg BID, n=2884) or to the ACE-NEP inhibitor omapatrilat (40 mg once daily, n=2886) for a mean of 14.5 months. The primary end point—the combined risk of death or hospitalization for heart failure requiring intravenous treatment—was used prospectively to test both a superiority and noninferiority hypothesis (based on the effect of enalapril in the Studies of Left Ventricular Dysfunction [SOLVD] Treatment Trial). A primary end point was achieved in 973 patients in the enalapril group and in 914 patients in the omapatrilat group (hazard ratio 0.94; 95% CI: 0.86 to 1.03, P=0.187)—a result that fulfilled prespecified criteria for noninferiority but not for superiority. The omapatrilat group also had a 9% lower risk of cardiovascular death or hospitalization (P=0.024) and a 6% lower risk of death (P=0.339). Post hoc analysis of the primary end point with the definition used in the SOLVD Treatment Trial (which included all hospitalizations for heart failure) showed an 11% lower risk in patients treated with omapatrilat (nominal P=0.012).&lt;p&gt;&lt;/p&gt; Conclusion— Omapatrilat reduces the risk of death and hospitalization in chronic heart failure but was not more effective than ACE inhibition alone in reducing the risk of a primary clinical event. Between-group differences in favor of omapatrilat observed in secondary and post hoc analyses warrant further study

    Retinal lateral inhibition provides the biological basis of long-range spatial induction

    No full text
    Retinal lateral inhibition is one of the conventional efficient coding mechanisms in the visual system that is produced by interneurons that pool signals over a neighborhood of presynaptic feedforward cells and send inhibitory signals back to them. Thus, the receptive-field (RF) of a retinal ganglion cell has a center-surround receptive-field (RF) profile that is classically represented as a difference-of-Gaussian (DOG) adequate for efficient spatial contrast coding. The DOG RF profile has been attributed to produce the psychophysical phenomena of brightness induction, in which the perceived brightness of an object is affected by that of its vicinity, either shifting away from it (brightness contrast) or becoming more similar to it (brightness assimilation) depending on the size of the surfaces surrounding the object. While brightness contrast can be modeled using a DOG with a narrow surround, brightness assimilation requires a wide suppressive surround. Early retinal studies determined that the suppressive surround of a retinal ganglion cell is narrow ( 500–1000 μm). In the current study, we examine the effect of this wide interneuron RF component in two biophysical retinal models and show that for both of the retinal models it explains the long-range effect evidenced in simultaneous brightness induction phenomena and that the spatial extent of this long-range effect of the retinal model responses matches that of perceptual data. These results suggest that the retinal lateral inhibition mechanism alone can regulate local as well as long-range spatial induction through the narrow and wide RF components of retinal interneurons, arguing against the existing view that spatial induction is operated by two separate local vs. long-range mechanisms.This work was supported by the European Research Council, Starting Grant ref. 306337, by the Spanish government and FEDER Fund, grant ref. TIN2015-71537-P(MINECO/FEDER,UE), and by the Icrea Academia Award
    corecore