186 research outputs found

    Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tetrahymena thermophila</it>, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of <it>Tetrahymena</it>'s coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing.</p> <p>Results</p> <p>We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified.</p> <p>Conclusion</p> <p>We report here significant progress in genome closure and reannotation of <it>Tetrahymena thermophila</it>. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.</p

    Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters

    Get PDF
    The use of fluoroquinolones for the treatment of infections in humans and animals has increased in Argentina, and they can be found in large amounts in water bodies. The present study investigated the occurrence and associated ecological risk of 5 fluoroquinolones in rivers and farm wastewaters of San Luis, Santa Fe, Córdoba, Entre Ríos, and Buenos Aires provinces of Argentina by high-performance liquid chromatography coupled to fast-scanning fluorescence detection and ultra–high-performance liquid chromatography coupled to triple quadrupole mass spectrometry detection. The maximum concentrations of ciprofloxacin, enrofloxacin, ofloxacin, enoxacin, and difloxacin found in wastewater were 1.14, 11.9, 1.78, 22.1, and 14.2 μg L–1, respectively. In the case of river samples, only enrofloxacin was found, at a concentration of 0.97 μg L–1. The individual risk of aquatic organisms associated with water pollution due to fluoroquinolones was higher in bacteria, cyanobacteria, algae, plants, and anurans than in crustaceae and fish, with, in some cases, risk quotients >1. The proportion of samples classified as high risk was 87.5% for ofloxacin, 63.5% for enrofloxacin, 57.1% for ciprofloxacin, and 25% for enoxacin. Our results suggest that the prevalence of fluoroquinolones in water could be potentially risky for the aquatic ecosystem, and harmful to biodiversity.Fil: Teglia, Carla Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Perez, Florencia Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Michlig, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Investigación y Análisis de Residuos y Contaminantes Químicos; ArgentinaFil: Repetti, María Rosa. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Investigación y Análisis de Residuos y Contaminantes Químicos; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Culzoni, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentin

    Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome

    Get PDF
    The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymenas germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.</p

    Complete Mitochondrial Genome Sequence of Three Tetrahymena Species Reveals Mutation Hot Spots and Accelerated Nonsynonymous Substitutions in Ymf Genes

    Get PDF
    The ciliate Tetrahymena, a model organism, contains divergent mitochondrial (Mt) genome with unusual properties, where half of its 44 genes still remain without a definitive function. These genes could be categorized into two major groups of KPC (known protein coding) and Ymf (genes without an identified function). To gain insights into the mechanisms underlying gene divergence and molecular evolution of Tetrahymena (T.) Mt genomes, we sequenced three Mt genomes of T.paravorax, T.pigmentosa, and T.malaccensis. These genomes were aligned and the analyses were carried out using several programs that calculate distance, nucleotide substitution (dn/ds), and their rate ratios (ω) on individual codon sites and via a sliding window approach. Comparative genomic analysis indicated a conserved putative transcription control sequence, a GC box, in a region where presumably transcription and replication initiate. We also found distinct features in Mt genome of T.paravorax despite similar genome organization among these ∼47 kb long linear genomes. Another significant finding was the presence of at least one or more highly variable regions in Ymf genes where majority of substitutions were concentrated. These regions were mutation hotspots where elevated distances and the dn/ds ratios were primarily due to an increase in the number of nonsynonymous substitutions, suggesting relaxed selective constraint. However, in a few Ymf genes, accelerated rates of nonsynonymous substitutions may be due to positive selection. Similarly, on protein level the majority of amino acid replacements occurred in these regions. Ymf genes comprise half of the genes in Tetrahymena Mt genomes, so understanding why they have not been assigned definitive functions is an important aspect of molecular evolution. Importantly, nucleotide substitution types and rates suggest possible reasons for not being able to find homologues for Ymf genes. Additionally, comparative genomic analysis of complete Mt genomes is essential in identifying biologically significant motifs such as control regions

    Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    Get PDF
    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance

    Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

    Get PDF
    <div><h3>Background</h3><p>The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, <em>Tetrahymena thermophila</em>. <em>Tetrahymena</em> forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of <em>Tetrahymena</em> demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (<em>BTU1</em> and <em>BTU2</em>) encode the canonical β-tubulin, BTU2, and six genes (<em>BLT1-6</em>) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2.</p> <h3>Methodology/Principal Findings</h3><p>With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins <em>in vivo</em>, we transformed <em>Tetrahymena</em> with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically.</p> <h3>Conclusion/Significance</h3><p>We conclude that <em>Tetrahymena</em> uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.</p> </div

    Intersyngenic variations in the esterases and acid phosphatases of Tetrahymena pyriformis

    Full text link
    The esterase and acid phosphatase isozymes were surveyed in strains of syngens 2–12 under conditions found to be optimal for syngen 1. Both intersyngenic and intrasyngenic variations were found. Comparisons of the esterases suggest that homologous enzymes are present in certain syngens and that some ordering of the variations with respect to syngen differences is possible. The acid phosphatases are highly polymorphic in different strains even within a syngen, and the variations cannot be ordered with respect to syngen differences. These results are discussed in terms of other types of studies directed at assessing syngen relationships and in terms of the sources of variation. It was concluded that only characters less vulnerable to intra clonal variation will be capable of revealing syngen relationships.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44168/1/10528_2004_Article_BF00485640.pd

    Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in Tetrahymena thermophila

    Get PDF
    Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways
    corecore