52 research outputs found

    Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraurethral electrical stimulation (IES) of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary tract presents a challenge when trying to determine the optimal geometry and position of IES electrodes for evoking these reflexes. This study aimed to determine the optimal intraurethral electrode configuration(s) and locations for selectively activating targeted pudendal afferents to aid future preclinical and clinical investigations.</p> <p>Methods</p> <p>A finite element model (FEM) of the male cat urethra and surrounding structures was generated to simulate IES with a variety of electrode configurations and locations. The activating functions (AFs) along pudendal afferent branches innervating the cat urethra were determined. Additionally, the thresholds for activation of pudendal afferent branches were measured in α-chloralose anesthetized cats.</p> <p>Results</p> <p>Maximum AFs evoked by intraurethral stimulation in the FEM and in vivo threshold intensities were dependent on stimulation location and electrode configuration.</p> <p>Conclusions</p> <p>A ring electrode configuration is ideal for IES. Stimulation near the urethral meatus or prostate can activate the pudendal afferent fibers at the lowest intensities, and allowed selective activation of the dorsal penile nerve or cranial sensory nerve, respectively. Electrode location was a more important factor than electrode configuration for determining stimulation threshold intensity and nerve selectivity.</p

    Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases

    Get PDF
    Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development

    Ceramides bind VDAC2 to trigger mitochondrial apoptosis

    Get PDF
    Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity

    Foregut caustic injuries: results of the world society of emergency surgery consensus conference

    Full text link

    Altered calcium handling is an early sign of streptozotocin-induced diabetic cardiomyopathy

    No full text
    The main objective of the present study was to determine alterations of calcium handling in the diabetic rat heart during the transition from adaptive to maladaptive phase of cardiomyopathy. By inhibiting the nuclear enzyme poly(ADP-ribose) polymerase (PARP), we also investigated the possible role of this enzyme in the sequence of pathological events. Six weeks after induction of type I diabetes by injection of streptozotocin in rats, the hearts were perfused according to Langendorff. Intracellular-free calcium (Ca2+i) levels were measured by surface fluorometry using Indo-1 AM. Cyclic changes in Ca2+i concentrations and hemodynamic parameters were measured simultaneously. The hearts were challenged by infusion of isoproterenol. Six weeks of diabetes resulted in reduced inotropy and lusitropy. The diabetic hearts (DM) expressed a significantly elevated end-diastolic Ca2+i level (control, 111±20 vs DM, 221±35 nM). The maximal transport capacity of SERCA2a and conductance of RyR2 were reduced. These changes were not accompanied by major alterations in the tissue content of SERCA2a, RyR2, phospholamban and Na+/Ca2+ exchanger. In response to ß-adrenergic activation, SERCA2a transport capacity and RyR2 conductance were stunted in the DM hearts. Inhibition of PARP induced minor changes in the mechanical function and calcium handling of the DM hearts. In conclusion, the observed changes in contractility and in Ca2+i handling are most likely attributable to functional disturbances of SERCA2a and RyR2 in this transitional phase of diabetes. At this stage of diabetes, PARP does not appear to play a significant pathogenetic role in the alterations in contractile function and calcium handlin

    Altered calcium handling is an early sign of streptozotocin-induced diabetic cardiomyopathy

    No full text
    The main objective of the present study was to determine alterations of calcium handling in the diabetic rat heart during the transition from adaptive to maladaptive phase of cardiomyopathy. By inhibiting the nuclear enzyme poly(ADP-ribose) polymerase (PARP), we also investigated the possible role of this enzyme in the sequence of pathological events. Six weeks after induction of type I diabetes by injection of streptozotocin in rats, the hearts were perfused according to Langendorff. Intracellular-free calcium (Ca2+i) levels were measured by surface fluorometry using Indo-1 AM. Cyclic changes in Ca2+i concentrations and hemodynamic parameters were measured simultaneously. The hearts were challenged by infusion of isoproterenol. Six weeks of diabetes resulted in reduced inotropy and lusitropy. The diabetic hearts (DM) expressed a significantly elevated end-diastolic Ca2+i level (control, 111±20 vs DM, 221±35 nM). The maximal transport capacity of SERCA2a and conductance of RyR2 were reduced. These changes were not accompanied by major alterations in the tissue content of SERCA2a, RyR2, phospholamban and Na+/Ca2+ exchanger. In response to ß-adrenergic activation, SERCA2a transport capacity and RyR2 conductance were stunted in the DM hearts. Inhibition of PARP induced minor changes in the mechanical function and calcium handling of the DM hearts. In conclusion, the observed changes in contractility and in Ca2+i handling are most likely attributable to functional disturbances of SERCA2a and RyR2 in this transitional phase of diabetes. At this stage of diabetes, PARP does not appear to play a significant pathogenetic role in the alterations in contractile function and calcium handlin
    corecore