388 research outputs found

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    Modeling a teacher in a tutorial-like system using Learning Automata

    Get PDF
    The goal of this paper is to present a novel approach to model the behavior of a Teacher in a Tutorial- like system. In this model, the Teacher is capable of presenting teaching material from a Socratic-type Domain model via multiple-choice questions. Since this knowledge is stored in the Domain model in chapters with different levels of complexity, the Teacher is able to present learning material of varying degrees of difficulty to the Students. In our model, we propose that the Teacher will be able to assist the Students to learn the more difficult material. In order to achieve this, he provides them with hints that are relative to the difficulty of the learning material presented. This enables the Students to cope with the process of handling more complex knowledge, and to be able to learn it appropriately. To our knowledge, the findings of this study are novel to the field of intelligent adaptation using Learning Automata (LA). The novelty lies in the fact that the learning system has a strategy by which it can deal with increasingly more complex/difficult Environments (or domains from which the learning as to be achieved). In our approach, the convergence of the Student models (represented by LA) is driven not only by the response of the Environment (Teacher), but also by the hints that are provided by the latter. Our proposed Teacher model has been tested against different benchmark Environments, and the results of these simulations have demonstrated the salient aspects of our model. The main conclusion is that Normal and Below-Normal learners benefited significantly from the hints provided by the Teacher, while the benefits to (brilliant) Fast learners were marginal. This seems to be in-line with our subjective understanding of the behavior of real-life Students

    Sequence and de novo assembly of the genome of the Indian oil sardine, Sardinella longiceps

    Get PDF
    The Indian oil sardine, Sardinella longiceps, is a widely distributed and commercially important small pelagic fish of the Northern Indian Ocean. The genome of the Indian oil sardine has been characterized using Illumina and Nanopore platforms. The assembly is 1.077 Gb (31.86 Mb Scaffold N50) in size with a repeat content of 23.24%. The BUSCO (Benchmarking Universal Single Copy Orthologues) completeness of the assembly is 93.5% when compared with Actinopterygii (ray finned fishes) data set. A total of 46316 protein coding genes were predicted. Sardinella longiceps is nutritionally rich with high levels of omega-3 polyunsaturated fatty acids (PUFA). The core genes for omega-3 PUFA biosynthesis, such as Elovl 1a and 1b,Elovl 2, Elovl 4a and 4b,Elovl 8a and 8b,and Fads 2, were observed in Sardinella longiceps. The presence of these genes may indicate the PUFA biosynthetic capability of Indian oil sardine, which needs to be confirmed functionally

    A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma

    Get PDF
    NUT midline carcinoma (NMC) is a fatal cancer that arises in various tissues along the upper midline of the body. The defining molecular feature of NMC is a chromosomal translocation that joins (in the majority of cases) the nuclear testis gene NUT (NUTM1) to the bromodomain protein family member 4 (BRD4) and thereby creating a fusion oncogene that disrupts cellular differentiation and drives the disease. In this study, we report the case of an adolescent NMC patient presenting with severe facial pain, proptosis and visual impairment due to a mass arising from the ethmoid sinus that invaded the right orbit and frontal lobe. Treatment involved radical resection, including exenteration of the affected eye with the view to consolidate treatment with radiation therapy; however, the patient experienced rapid tumor progression and passed away 79 days post resection. Molecular analysis of the tumor tissue identified a novel in-frame BRD4-NUT transcript, with BRD4 exon 15 fused to the last 124 nucleotides of NUT exon 2 (BRD4-NUT ex15:ex2Δnt1–585). The partial deletion of NUT exon 2 was attributed to a mid-exonic genomic breakpoint and the subsequent activation of a cryptic splice site further downstream within the exon. Inhibition of the canonical 3′ acceptor splice site of NUT intron 1 in cell lines expressing the most common NMC fusion transcripts (PER-403, BRD4-NUT ex11:ex2; PER-624, BRD4-NUT ex15:ex2) induced alternative splicing from the same cryptic splice site as identified in the patient. Detection of low levels of an in-frame BRD4-NUT ex11:ex2Δnt1–585 transcript in PER-403 confirmed endogenous splicing from this alternative exon 2 splice site. Although further studies are necessary to assess the clinical relevance of the increasing number of variant fusions described in NMC, the findings presented in this case identify alternative splicing as a mechanism that contributes to this pathogenic complexity

    Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India’s forest landscapes

    Get PDF
    Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global “One Health” initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014–2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings

    Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model

    Get PDF
    Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required

    Elevational Patterns of Species Richness, Range and Body Size for Spiny Frogs

    Get PDF
    Quantifying spatial patterns of species richness is a core problem in biodiversity theory. Spiny frogs of the subfamily Painae (Anura: Dicroglossidae) are widespread, but endemic to Asia. Using spiny frog distribution and body size data, and a digital elevation model data set we explored altitudinal patterns of spiny frog richness and quantified the effect of area on the richness pattern over a large altitudinal gradient from 0–5000 m a.s.l. We also tested two hypotheses: (i) the Rapoport's altitudinal effect is valid for the Painae, and (ii) Bergmann's clines are present in spiny frogs. The species richness of Painae across four different altitudinal band widths (100 m, 200 m, 300 m and 400 m) all showed hump-shaped patterns along altitudinal gradient. The altitudinal changes in species richness of the Paini and Quasipaini tribes further confirmed this finding, while the peak of Quasipaini species richness occurred at lower elevations than the maxima of Paini. The area did not explain a significant amount of variation in total, nor Paini species richness, but it did explain variation in Quasipaini. Five distinct groups across altitudinal gradient were found. Species altitudinal ranges did not expand with an increase in the midpoints of altitudinal ranges. A significant negative correlation between body size and elevation was exhibited. Our findings demonstrate that Rapoport's altitudinal rule is not a compulsory attribute of spiny frogs and also suggest that Bergmann's rule is not generally applicable to amphibians. The study highlights a need to explore the underlying mechanisms of species richness patterns, particularly for amphibians in macroecology

    Describing the impact of health research: a Research Impact Framework

    Get PDF
    BACKGROUND: Researchers are increasingly required to describe the impact of their work, e.g. in grant proposals, project reports, press releases and research assessment exercises. Specialised impact assessment studies can be difficult to replicate and may require resources and skills not available to individual researchers. Researchers are often hard-pressed to identify and describe research impacts and ad hoc accounts do not facilitate comparison across time or projects. METHODS: The Research Impact Framework was developed by identifying potential areas of health research impact from the research impact assessment literature and based on research assessment criteria, for example, as set out by the UK Research Assessment Exercise panels. A prototype of the framework was used to guide an analysis of the impact of selected research projects at the London School of Hygiene and Tropical Medicine. Additional areas of impact were identified in the process and researchers also provided feedback on which descriptive categories they thought were useful and valid vis-à-vis the nature and impact of their work. RESULTS: We identified four broad areas of impact: I. Research-related impacts; II. Policy impacts; III. Service impacts: health and intersectoral and IV. Societal impacts. Within each of these areas, further descriptive categories were identified. For example, the nature of research impact on policy can be described using the following categorisation, put forward by Weiss: Instrumental use where research findings drive policy-making; Mobilisation of support where research provides support for policy proposals; Conceptual use where research influences the concepts and language of policy deliberations and Redefining/wider influence where research leads to rethinking and changing established practices and beliefs. CONCLUSION: Researchers, while initially sceptical, found that the Research Impact Framework provided prompts and descriptive categories that helped them systematically identify a range of specific and verifiable impacts related to their work (compared to ad hoc approaches they had previously used). The framework could also help researchers think through implementation strategies and identify unintended or harmful effects. The standardised structure of the framework facilitates comparison of research impacts across projects and time, which is useful from analytical, management and assessment perspectives
    corecore