11 research outputs found

    The young stellar content of the giant H II regions M 8, G333.6-0.2, and NGC 6357 with VLT/KMOS

    Get PDF
    Context. The identification and characterisation of populations of young massive stars in (giant) H II regions provides important constraints on (i) the formation process of massive stars and their early feedback on the environment, and (ii) the initial conditions for population synthesis models predicting the evolution of ensembles of stars. Aims. We identify and characterise the stellar populations of the following young giant H II regions: M 8, G333.6-0.2, and NGC 6357. Methods. We have acquired H-and K-band spectra of around 200 stars using the K-band Multi Object Spectrograph on the ESO Very Large Telescope. The targets for M 8 and NGC 6357 were selected from the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX), which combines X-ray observations with near-infrared (NIR) and mid-infrared data. For G333.6-0.2, the sample selection is based on the NIR colours combined with X-ray data. We introduce an automatic spectral classification method in order to obtain temperatures and luminosities for the observed stars. We analysed the stellar populations using their photometric, astrometric, and spectroscopic properties and compared the position of the stars in the Hertzprung-Russell diagram with stellar evolution models to constrain their ages and mass ranges. Results. We confirm the presence of candidate ionising sources in the three regions and report new ones, including the first spectroscopically identified O stars in G333.6-0.2. In M 8 and NGC 6357, two populations are identified: (i) OB main-sequence stars (M > 5 M· ) and (ii) pre-main sequence stars (M ≈ 0.5ℓ-ℓ 5 M· ). The ages of the clusters are ∼1-3 Myr, 90% probability of being members of the H II region, whereas a selection based on NIR colours leads to a membership probability of only ∼70%

    A modern guide to quantitative spectroscopy of massive OB stars

    Full text link
    Quantitative spectroscopy is a powerful technique from which we can extract information about the physical properties and surface chemical composition of stars. In this chapter, I guide the reader through the main ideas required to get initiated in the learning process to become an expert in the application of state-of-the-art quantitative spectroscopic techniques to the study of massive OB stars. NB: This chapter is intended to serve to young students as a first approach to a field which has attracted my attention during the last 20 years. I should note that, despite its importance, at present, the number of real experts in the field around the world is limited to less than 50 people, and about one third of them are close to retirement. Hence, I consider that this is a good moment to write a summary text on the subject to serve as guideline for the next generations of students interested in joining the massive star crew. If you are one of them, please, use this chapter as a first working notebook. Do not stop here. Dig also, for further details, into the literature I quote along the text. And, once there, dig even deeper to find all the original sources explaining in more detail the physical and technical concepts that are presently incorporated into our modern (almost) automatized tools.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    The VLT-FLAMES Tarantula Survey XXXII. Low-luminosity late O-type stars: classification, main physical parameters, and silicon abundances

    No full text
    keywords: Astrophysics - Astrophysics of Galaxies eid: arXiv:2001.01451 archiveprefix: arXiv primaryclass: astro-ph.GA adsurl: https://ui.adsabs.harvard.edu/abs/2020arXiv200101451M adsnote: Provided by the SAO/NASA Astrophysics Data Systemstatus: publishe

    The VLT-FLAMES Tarantula Survey: XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus

    No full text
    Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-Type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-Type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods. We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-Turbulent motions to the line broadening. Results. We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-The-Art models. For stars initially more massive than approximately 60 M, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at M 25 M. At masses below 60 M, the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at M 18 M. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7 V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behavior may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of Si iv to He i absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (i.e., ν e sini < 200kms -1 ) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are ~0.3 dex higher than earlier results. For stars brighter than 10 5 L, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were fV 1/8 to 1/6

    The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    No full text
    ontext. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims. The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods. In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results. Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus’s core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2–O7) tend to have shorter orbital periods than later spectral types (O9.2–O9.7). Conclusions. Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe’s peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z ~ 0.5 Z⊙
    corecore