114 research outputs found

    Antiflow of kaons in relativistic heavy ion collisions

    Get PDF
    We compare relativistic transport model calculations to recent data on the sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A soft nuclear equation of state is found to describe very well the positive proton flow data measured in the same experiment. In the absence of kaon potential, the K^0 flow pattern is similar to that of protons. The kaon flow becomes negative if a repulsive kaon potential determined from the impulse approximation is introduced. However, this potential underestimates the data which exhibits larger antiflow. An excellent agreement with the data is obtained when a relativistic scalar-vector kaon potential, that has stronger density dependence, is used. We further find that the transverse momentum dependence of directed and elliptic flow is quite sensitive to the kaon potential in dense matter.Comment: 5 pages, Revtex, 4 figure

    Keeping it in the family: Parental influences on young people's attitudes to police

    Get PDF
    Prior research finds young people are less satisfied with police than their older counterparts. Despite this, our understanding of youth attitudes to police is limited, as most research has focused on adult attitudes to police. This study adds to our understanding by examining the influence of parent–child dynamics on youth attitudes to police. We predict that youth attitudes to police will be influenced by their parents’ attitudes. A survey of 540 school students in South East Queensland reveals that perceived parental attitudes to police are associated with youth attitudes to police. However, this effect is partially mediated by maternal, but not paternal attachment. These findings suggest that youth attitudes to police are not simply influenced by contact with police and delinquency, but that familial context is important. Consequently, our theoretical understanding of youth attitudes to police must move beyond a focus upon police contact and delinquency

    Triangulation network of 1929-1944 of the first 1:500 urban map of València

    Full text link
    [EN] Triangulation is a surveying method on which earlier maps made were based. Although the origins of the method can be traced back to the 16th century, it is still used today, with minor changes, to adjust networks observed with modern geodetic techniques. In this paper we present the geodetic survey work that was carried out for the primary triangulation network of the first 1:500 urban map of the city of València (Spain). It spanned from 1929 to 1944 and resulted in 421 maps covering about 174 square kilometres. We focus on four key elements to define the geometric framework of a map: (1) the geodetic network, (2) the cartographic projection, (3) the baseline measurements, and (4) the primary triangulation. The paper is based on the interpretation of original documents and field books recovered from the archives of the València City Council. In order to check the accuracy and consistency of the survey work, we recomputed all calculations directly from the field data, following the mathematical procedures of the time. We obtained a set of transformation parameters to convert the coordinates of 1929 to current coordinates based on the European Terrestrial Reference System of 1989 (ETRS89). Results showed that the 1929 primary triangulation angles and coordinates are accurate to 8 s of arc and 35 cm respectively, and that the coordinates transform well into the current reference system with average residuals of 26 cm across nine control points, demonstrating the high quality of the 1929 work.Villar-Cano, M.; Marqués-Mateu, Á.; Jiménez-Martínez, MJ. (2020). Triangulation network of 1929-1944 of the first 1:500 urban map of València. Survey Review (Online). 52(373):317-329. https://doi.org/10.1080/00396265.2018.1564599S31732952373Bitelli, G., Cremonini, S., & Gatta, G. (2014). Cartographic heritage: Toward unconventional methods for quantitative analysis of pre-geodetic maps. Journal of Cultural Heritage, 15(2), 183-195. doi:10.1016/j.culher.2013.04.003Blachut, T. J., Chrzanowski, A., & Saastamoinen, J. H. (1979). Urban Surveying and Mapping. doi:10.1007/978-1-4612-6145-2Brinker, R. C., & Minnick, R. (Eds.). (1987). The Surveying Handbook. doi:10.1007/978-1-4757-1188-2Gatta, G. 2010. Valorizzazione di cartografia storica attraverso moderne tecniche geomatiche: recupero metrico, elaborazione e consultazione in ambiente digitale [Valuation of historic cartography using modern geomatics techniques: metric recovering, making and use in digital environment]. Doctoral thesis. Bologna: Universitá di Bologna. 295 pages. (In Italian).Gorse, C., Johnston, D., & Pritchard, M. (2012). A Dictionary of Construction, Surveying and Civil Engineering. doi:10.1093/acref/9780199534463.001.0001Hotine, M. (1939). THE RE-TRIANGULATION OF GREAT BRITAIN IV—BASE MEASUREMENT. Empire Survey Review, 5(34), 211-225. doi:10.1179/sre.1939.5.34.211Kahmen, H., & Faig, W. (1988). Surveying. doi:10.1515/9783110845716Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying. doi:10.1002/9781119018612Murdin, P. (2009). Full Meridian of Glory. doi:10.1007/978-0-387-75534-2Schofield, W., & Breach, M. (2007). Engineering Surveying. doi:10.1201/b12847Seeber, G. (2003). Satellite Geodesy. doi:10.1515/9783110200089Snyder, J. P. (1987). Map projections: A working manual. Professional Paper. doi:10.3133/pp139

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    The PLATO mission

    Get PDF
    PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases

    STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview

    Full text link

    Changes in membership structure

    Full text link
    corecore