1,665 research outputs found

    Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    Get PDF
    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.Comment: 5 pages, 4 figures; Submitted to PRA Rapid Communication

    The optical calcium frequency standards of PTB and NIST

    Get PDF
    We describe the current status of the Ca optical frequency standards with laser-cooled neutral atoms realized in two different laboratories for the purpose of developing a possible future optical atomic clock. Frequency measurements performed at the Physikalisch-Technische Bundesanstalt (PTB) and the National Institute of Standards and Technology (NIST) make the frequency of the clock transition of 40Ca one of the best known optical frequencies (relative uncertainty 1.2e-14) and the measurements of this frequency in both laboratories agree to well within their respective uncertainties. Prospects for improvement by orders of magnitude in the relative uncertainty of the standard look feasible.Comment: 13 pages, 11 figures, to appear in Comptes Rendus Physiqu

    Hyper-Ramsey Spectroscopy of Optical Clock Transitions

    Full text link
    We present non-standard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case these frequency shifts can be suppressed considerably below a fractional level of 10^{-17}. Moreover, our approach opens the door for the high-precision optical clocks based on direct frequency comb spectroscopy.Comment: 5 pages, 4 figure

    A wind environment and Lorentz factors of tens explain gamma-ray bursts X-ray plateau

    Full text link
    Gamma-ray bursts (GRBs) are known to have the most relativistic jets, with initial Lorentz factors in the order of a few hundreds. Many GRBs display an early X-ray light-curve plateau, which was not theoretically expected and therefore puzzled the community for many years. Here, we show that this observed signal is naturally obtained within the classical GRB "fireball" model, provided that the initial Lorentz factor is rather a few tens, and the expansion occurs into a medium-low density "wind". The range of Lorentz factors in GRB jets is thus much wider than previously thought and bridges an observational gap between mildly relativistic jets inferred in active galactic nuclei, to highly relativistic jets deduced in few extreme GRBs. Furthermore, long GRB progenitors are either not Wolf-Rayet stars, or the wind properties during the final stellar evolution phase are different than at earlier times. We discuss several testable predictions of this model.Comment: 61 pages, 24 figures, 9 tables. A final edited version will appear in Nature Communication

    Doppler cooling and trapping on forbidden transitions

    Get PDF
    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments

    Converting genetic network oscillations into somite spatial pattern

    Full text link
    In most vertebrate species, the body axis is generated by the formation of repeated transient structures called somites. This spatial periodicity in somitogenesis has been related to the temporally sustained oscillations in certain mRNAs and their associated gene products in the cells forming the presomatic mesoderm. The mechanism underlying these oscillations have been identified as due to the delays involved in the synthesis of mRNA and translation into protein molecules [J. Lewis, Current Biol. {\bf 13}, 1398 (2003)]. In addition, in the zebrafish embryo intercellular Notch signalling couples these oscillators and a longitudinal positional information signal in the form of an Fgf8 gradient exists that could be used to transform these coupled temporal oscillations into the observed spatial periodicity of somites. Here we consider a simple model based on this known biology and study its consequences for somitogenesis. Comparison is made with the known properties of somite formation in the zebrafish embryo . We also study the effects of localized Fgf8 perturbations on somite patterning.Comment: 7 pages, 7 figure

    Sub-femtosecond absolute timing precision with a 10 GHz hybrid photonic-microwave oscillator

    Full text link
    We present an optical-electronic approach to generating microwave signals with high spectral purity. By circumventing shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals with an absolute timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz)

    Scattering length of the ground state Mg+Mg collision

    Get PDF
    We have constructed the X 1SIGMAg+ potential for the collision between two ground state Mg atoms and analyzed the effect of uncertainties in the shape of the potential on scattering properties at ultra-cold temperatures. This potential reproduces the experimental term values to 0.2 inverse cm and has a scattering length of +1.4(5) nm where the error is prodominantly due to the uncertainty in the dissociation energy and the C6 dispersion coefficient. A positive sign of the scattering length suggests that a Bose-Einstein condensate of ground state Mg atoms is stable.Comment: 15 pages, 3 figures, Submitted Phys. Rev.
    • …
    corecore