53 research outputs found

    Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor

    Full text link
    The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presentedComment: 4 page

    Gaussian Process Modelling for Uncertainty Quantification in Convectively-Enhanced Dissolution Processes in Porous Media

    Get PDF
    Numerical groundwater flow and dissolution models of physico-chemical processes in deep aquifers are usually subject to uncertainty in one or more of the model input parameters. This uncertainty is propagated through the equations and needs to be quantified and characterised in order to rely on the model outputs. In this paper we present a Gaussian process emulation method as a tool for performing uncertainty quantification in mathematical models for convection and dissolution processes in porous media. One of the advantages of this method is its ability to significantly reduce the computational cost of an uncertainty analysis, while yielding accurate results, compared to classical Monte Carlo methods. We apply the methodology to a model of convectively-enhanced dissolution processes occurring during carbon capture and storage. In this model, the Gaussian process methodology fails due to the presence of multiple branches of solutions emanating from a bifurcation point, i.e., two equilibrium states exist rather than one. To overcome this issue we use a classifier as a precursor to the Gaussian process emulation, after which we are able to successfully perform a full uncertainty analysis in the vicinity of the bifurcation point
    corecore