6 research outputs found

    Resonant nucleation of spatio-temporal order via parametric modal amplification

    Get PDF
    We investigate, analytically and numerically, the emergence of spatio-temporal order in nonequilibrium scalar field theories. The onset of order is triggered by destabilizing interactions (DIs), which instantaneously change the interacting potential from a single to a double-well, tunable to be either degenerate (SDW) or nondegenerate (ADW). For the SDW case, we observe the emergence of spatio-temporal coherent structures known as oscillons. We show that this emergence is initially synchronized, the result of parametric amplification of the relevant oscillon modes. We also discuss how these ordered structures act as bottlenecks for equipartition. For ADW potentials, we show how the same parametric amplification mechanism may trigger the rapid decay of a metastable state. For a range of temperatures, the decay rates associated with this resonant nucleation can be orders of magnitude larger than those computed by homogeneous nucleation, with time-scales given by a simple power law, τRN∼[Eb/kBT]B\tau_{\rm RN}\sim[E_b/k_BT]^B, where BB depends weakly on the temperature and Eb/kBTE_b/k_BT is the free-energy barrier of a critical fluctuation.Comment: 38 pages, 20 figures now included within the tex

    The geology and geophysics of Kuiper Belt object (486958) Arrokoth

    Get PDF
    The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism

    Modeling glacial flow on and onto Pluto’s Sputnik Planitia

    No full text
    Observations of Pluto's surface made by the New Horizons spacecraft indicate present-day N2 ice glaciation in and around the basin informally known as Sputnik Planitia. Motivated by these observations, we have developed an evolutionary glacial flow model of solid N2 ice that takes into account its published thermophysical and rheological properties. This model assumes that glacial ice flows laminarly and has a low aspect ratio which permits a vertically integrated mathematical formulation. We assess the conditions for the validity of laminar N2 ice motion by revisiting the problem of the onset of solid-state buoyant convection of N2 ice for a variety of bottom thermal boundary conditions. Subject to uncertainties in N2 ice rheology, N2 ice layers are estimated to flow laminarly for thicknesses less than 400–1000 m. The resulting mass-flux formulation for when the N2 ice flows as a laminar dry glacier is characterized by an Arrhenius–Glen functional form. The flow model developed is used here to qualitatively answer some questions motivated by features we interpret to be a result of glacial flow found on Sputnik Planitia. We find that the wavy transverse dark features found along the northern shoreline of Sputnik Planitia may be a transitory imprint of shallow topography just beneath the ice surface suggesting the possibility that a major shoreward flow event happened relatively recently, within the last few hundred years. Model results also support the interpretation that the prominent darkened features resembling flow lobes observed along the eastern shoreline of the Sputnik Planitia basin may be the result of a basally wet N2 glacier flowing into the basin from the pitted highlands of eastern Tombaugh Regio

    The CH 4 cycles on Pluto over seasonal and astronomical timescales

    No full text
    International audienceThese observations suggest that CH 4 on Pluto has a complex history, involving reservoirs of different composition, thickness and stability controlled by volatile processes occurring on different timescales. In order to interpret these observations, we use a Pluto volatile transport model able to simulate the cycles of N 2 and CH 4 ices over millions of years. By assuming fixed solid mixing ratios, we explore how changes in surface albedos, emissivities and thermal inertias impact volatile transport. This work is therefore a direct and natural continuation of the work by Bertrand et al. (2018), which only explored the N 2 cycles. Results show that bright CH 4 deposits can create cold traps for N 2 ice outside Sputnik Planitia, leading to a strong coupling between the N 2 and CH 4 cycles. Depending on the assumed albedo for CH 4 ice, the model predicts CH 4 ice accumulation (1) at the same equatorial latitudes where the Bladed Terrain Deposits are observed, supporting the idea that these CH 4-rich deposits are massive and perennial, or (2) at mid-latitudes (25°− 70°), forming a thick mantle which is consistent with New Horizons observations. In our simulations, both CH 4 ice reservoirs are not in an equilibrium state and either one can dominate the other over long timescales, depending on the assumptions made for the CH 4 albedo. This suggests that long-term volatile transport exists between the observed reservoirs. The model also reproduces the formation of N 2 deposits at mid-latitudes and in the equatorial depressions surrounding the Bladed Terrain Deposits, as observed by New Horizons. At the poles, only seasonal CH 4 and N 2 deposits are obtained in Pluto's current orbital configuration. Finally, we show that Pluto's atmosphere always contained, over the last astronomical cycles, enough gaseous CH 4 to absorb most of the incoming Lyman-α flux
    corecore