17 research outputs found

    In situ redox reactions facilitate the assembly of a mixed-valence metal-organic nanocapsule

    Get PDF
    C-alkylpyrogallol[4]arenes (PgCs) have been studied for their ability to form metal-organic nanocapsules (MONCs) through coordination to appropriate metal ions. Here we present the synthesis and characterization of an MnII/MnIII-seamed MONC in addition to its electrochemical and magnetic behavior. This MONC assembles from 24 manganese ions and 6 PgCs, while an additional metal ion is located on the capsule interior, anchored through the introduction of bridging nitrite ions. The latter originate from an in situ redox reaction that occurs during the self-assembly process, thus representing a new route to otherwise unobtainable nanocapsules

    A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity.

    Get PDF
    Heterozygosity for human () dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the promoter. The patients\u27 cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with DN mutations, ZNF341-deficient patients lack T helper 17 (T17) cells, have an excess of T2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the transcription-dependent autoinduction and sustained activity of STAT3

    Vitamin A derivatives in the prevention and treatment of human cancer.

    Full text link
    Vitamin A is essential for normal cellular growth and differentiation. A vast amount of laboratory data have clearly demonstrated the potent antiproliferative and differentiation-inducing effects of vitamin A and the synthetic analogues (retinoids). Recent in-vitro work has led to the exciting proposal that protein kinase-C may be centrally involved in many of retinoids' anticancer actions including the effects on ornithine decarboxylase induction, intracellular polyamine levels, and epidermal growth factor receptor number. Several intervention trials have clearly indicated that natural vitamin A at clinically tolerable doses has only limited activity against human neoplastic processes. Therefore, clinical work has focused on the synthetic derivatives with higher therapeutic indexes. In human cancer prevention, retinoids have been most effective for skin diseases, including actinic keratosis, keratoacanthoma, epidermodysplasia verruciformis, dysplastic nevus syndrome, and basal cell carcinoma. Several noncutaneous premaligancies, however, are currently receiving more attention in retinoid trials. Definite retinoid activity has been documented in oral leukoplakia, laryngeal papillomatosis, superficial bladder carcinoma, cervical dysplasia, bronchial metaplasia, and preleukemia. Significant therapeutic advances are also occurring with this class of drugs in some drug-resistant malignancies and several others that have become refractory, including advanced basal cell cancer, mycosis fungoides, melanoma, acute promyelocytic leukemia, and squamous cell carcinoma of the skin and of the head and neck. This report comprehensively presents the clinical data using retinoids as anticancer agents in human premalignant disorders and outlines the ongoing and planned studies with retinoids in combination and adjuvant therapy

    A Heuristic for definition of shifts in an emergency department

    No full text
    International audienceWe propose a model that combines simulation optimization and linear programming in order to define the shift pattern that best match the arrival pattern of patients in an Emergency Department (ED). The simulation model supplies the linear programming with the staffing levels that secure the performance of the ED, expressed in terms of the average Length of Stay (LOS) of patients. The linear model determines the shift scheduling of all employees with the use of the minimum cost, including several practical constraints as experienced in practice. The model includes also a heuristic that helps ED managers to find a solution that satisfies budget restrictions. This heuristic proposes an efficient manner of reducing the staffing cost, by decreasing the staffing levels in a way that affects the performance as less as possible. The application of the developed method leads to a reduction of 8.9% in the ED average LOS with the use of the same staffing budget
    corecore