449 research outputs found

    Efficient method for simulating quantum electron dynamics under the time dependent Kohn-Sham equation

    Get PDF
    A numerical scheme for solving the time-evolution of wave functions under the time dependent Kohn-Sham equation has been developed. Since the effective Hamiltonian depends on the wave functions, the wave functions and the effective Hamiltonian should evolve consistently with each other. For this purpose, a self-consistent loop is required at every time-step for solving the time-evolution numerically, which is computationally expensive. However, in this paper, we develop a different approach expressing a formal solution of the TD-KS equation, and prove that it is possible to solve the TD-KS equation efficiently and accurately by means of a simple numerical scheme without the use of any self-consistent loops.Comment: 5 pages, 3 figures. Physical Review E, 2002, in pres

    Towards lattice simulation of the gauge theory duals to black holes and hot strings

    Get PDF
    A generalization of the AdS/CFT conjecture postulates a duality between IIA string theory and 16 supercharge Yang-Mills quantum mechanics in the large N 't Hooft limit. At low temperatures string theory describes black holes, whose thermodynamics may hence be studied using the dual quantum mechanics. This quantum mechanics is strongly coupled which motivates the use of lattice techniques. We argue that, contrary to expectation, the theory when discretized naively will nevertheless recover continuum supersymmetry as the lattice spacing is sent to zero. We test these ideas by studying the 4 supercharge version of this Yang-Mills quantum mechanics in the 't Hooft limit. We use both a naive lattice action and a manifestly supersymmetric action. Using Monte Carlo methods we simulate the Euclidean theories, and study the lattice continuum limit, for both thermal and non-thermal periodic boundary conditions, confirming continuum supersymmetry is recovered for the naive action when appropriate. We obtain results for the thermal system with N up to 12. These favor the existence of a single deconfined phase for all non-zero temperatures. These results are an encouraging indication that the 16 supercharge theory is within reach using similar methods and resources.Comment: 49 pages, 14 figure

    Lattice supersymmetry, superfields and renormalization

    Full text link
    We study Euclidean lattice formulations of non-gauge supersymmetric models with up to four supercharges in various dimensions. We formulate the conditions under which the interacting lattice theory can exactly preserve one or more nilpotent anticommuting supersymmetries. We introduce a superfield formalism, which allows the enumeration of all possible lattice supersymmetry invariants. We use it to discuss the formulation of Q-exact lattice actions and their renormalization in a general manner. In some examples, one exact supersymmetry guarantees finiteness of the continuum limit of the lattice theory. As a consequence, we show that the desired quantum continuum limit is obtained without fine tuning for these models. Finally, we discuss the implications and possible further applications of our results to the study of gauge and non-gauge models.Comment: 44 pages, 1 figur

    Suppression of atomic displacive excitation in photo-induced A1g_{\mathrm{1g}} phonon mode of bismuth

    Full text link
    Atomic motion of a photo-induced coherent phonon of bismuth (Bi) is directly observed with time-resolved x-ray diffraction under a cryogenic temperature. It is found that displacive excitation in a fully symmetric A1g_{\mathrm{1g}} phonon mode is suppressed at a temperature T=9T = 9 K. This result implies a transfer of the phonon-generation mechanism from displacive to impulsive excitation with decreasing the temperature. It is comprehensively understandable in a framework of stimulated Raman scattering. The suppression of displacive excitation also indicates that the adiabatic potential surface at the photo-excited state deviates from a parabolic one, which is assumed to be realized at room temperature. This study points out important aspects of phonon generation in transient phonon-induced quantum phenomena

    Quantum suppression of shot noise in field emitters

    Get PDF
    We have analyzed the shot noise of electron emission under strong applied electric fields within the Landauer-Buttiker scheme. In contrast to the previous studies of vacuum-tube emitters, we show that in new generation electron emitters, scaled down to the nanometer dimensions, shot noise much smaller than the Schottky noise is observable. Carbon nanotube field emitters are among possible candidates to observe the effect of shot-noise suppression caused by quantum partitioning.Comment: 5 pages, 1 fig, minor changes, published versio

    Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal

    Full text link
    We investigate the electronic states around a single vacancy in silicon crystal by using the Green's function approach. The triply degenerate vacancy states within the band gap are found to be extended over a large distance 20A˚\sim20 {\rm \AA} from the vacancy site and contribute to the reciprocal temperature dependence of the quadrupole susceptibility resulting in the elastic softening at low temperture. The Curie constant of the quadrupole susceptibility for the trigonal mode (Oyz,Ozx,OxyO_{yz},O_{zx},O_{xy}) is largely enhanced as compared to that for the tetragonal mode (O20,O22O_{2}^{0},O_{2}^{2}). The obtained results are consistent with the recent ultrasonic experiments in silicon crystal down to 20 mK. We also calculate the dipole and octupole susceptibilities and find that the octupole susceptibilities are extremely enhannced for a specific mode.Comment: 6 pages, with 5 figure

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    On the shape of a D-brane bound state and its topology change

    Get PDF
    As is well known, coordinates of D-branes are described by NxN matrices. From generic non-commuting matrices, it is difficult to extract physics, for example, the shape of the distribution of positions of D-branes. To overcome this problem, we generalize and elaborate on a simple prescription, first introduced by Hotta, Nishimura and Tsuchiya, which determines the most appropriate gauge to make the separation between diagonal components (D-brane positions) and off-diagonal components. This prescription makes it possible to extract the distribution of D-branes directly from matrices. We verify the power of it by applying it to Monte-Carlo simulations for various lower dimensional Yang-Mills matrix models. In particular, we detect the topology change of the D-brane bound state for a phase transition of a matrix model; the existence of this phase transition is expected from the gauge/gravity duality, and the pattern of the topology change is strikingly similar to the counterpart in the gravity side, the black hole/black string transition. We also propose a criterion, based on the behavior of the off-diagonal components, which determines when our prescription gives a sensible definition of D-brane positions. We provide numerical evidence that our criterion is satisfied for the typical distance between D-branes. For a supersymmetric model, positions of D-branes can be defined even at a shorter distance scale. The behavior of off-diagonal elements found in this analysis gives some support for previous studies of D-brane bound states.Comment: 29 pages, 16 figure
    corecore