1,106 research outputs found

    Mutational Analysis in Pediatric Thyroid Cancer and Correlations with Age, Ethnicity, and Clinical Presentation.

    Get PDF
    BackgroundWell-differentiated thyroid cancer (WDTC) incidence in pediatrics is rising, most being papillary thyroid carcinoma (PTC). The objective of the study was to assess the prevalence of different mutations in pediatric WDTC and correlate the genotype with the clinical phenotype.MethodsThis is a single-center retrospective study. Thyroid tissue blocks from 42 consecutive pediatric WDTC patients who underwent thyroidectomy between 2001 and 2013 were analyzed at Quest Diagnostics for BRAF(V600E), RAS mutations (N,K,H), and RET/PTC and PAX8/PPARγ rearrangements, using validated molecular methods. Thyroid carcinomas included PTC, follicular thyroid carcinoma (FTC), and follicular variant of PTC (FVPTC).ResultsThirty-nine samples (29 females) were genotyped. The mean age at diagnosis was 14.7 years (range 7.9-18.4 years), and most were Hispanic (56.4%) or Caucasian (35.9%). The mean follow-up period was 2.9 years. Mutations were noted in 21/39 (53.8%), with both BRAF(V600E) (n = 9), and RET/PTC (n = 6) detected only in PTC. Mutations were detected in 2/5 FTC (PAX8/PPARγ and NRAS) and 3/6 FVPTC cases (PAX8/PPARγ). Of 28 PTC patients, 57.1% had mutations: 32.1% with BRAF(V600E), 21.4% with RET/PTC, and 3.6% with NRAS. Of patients with BRAF(V600E), 77.8% were Hispanic and 88.9% were >15 years, while all RET/PTC-positive patients were ≤15 years (p = 0.003). Tumor size, lymph node involvement, and distant metastasis at diagnosis (or soon after (131)I ablation) did not vary significantly based on the mutation.ConclusionsBRAF(V600E) was the most common mutation, especially in older and Hispanic adolescents. A larger, ethnically diverse pediatric cohort followed long term will enable the genotypic variability, clinical presentation, and response to therapy to be better assessed

    How to be causal: time, spacetime, and spectra

    Full text link
    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers Kronig relations. The specification of causality in terms of temporal differential eqations then shows us the way to write down dynamical models so that their causal nature /in the sense used here/ should be obvious to all. To extend existing treatments of causality that work only in the frequency domain, I derive a reformulation of the long-standing Kramers Kronig relations applicable not only to just temporal causality, but also to spacetime "light-cone" causality based on signals carried by waves. I also apply this causal reasoning to Maxwell's equations, which is an instructive example since their casual properties are sometimes debated.Comment: v4 - add Appdx A, "discrete" picture (not in EJP); v5 - add Appdx B, cause classification/frames (not in EJP); v7 - unusual model case; v8 add reference

    Electromagnetically induced transparency in cold 85Rb atoms trapped in the ground hyperfine F = 2 state

    Full text link
    We report electromagnetically induced transparency (EIT) in cold 85Rb atoms, trapped in the lower hyperfine level F = 2, of the ground state 52S1/2^{2}S_{1/2} (Tiwari V B \textit{et al} 2008 {\it Phys. Rev.} A {\bf 78} 063421). Two steady state Λ\Lambda-type systems of hyperfine energy levels are investigated using probe transitions into the levels F^{\prime} = 2 and F^{\prime} = 3 of the excited state 52P3/2^{2}P_{3/2} in the presence of coupling transitions F = 3 \to F^{\prime} = 2 and F = 3 \to F^{\prime} = 3, respectively. The effects of uncoupled magnetic sublevel transitions and coupling field's Rabi frequency on the EIT signal from these systems are studied using a simple theoretical model.Comment: 12 pages, 7 figure

    Probing the high momentum component of the deuteron at high Q^2

    Full text link
    The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle theta_nq and to extract missing momentum distributions for fixed values of theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg) recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.Comment: 5 pages, 2 figure

    Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values

    Full text link
    The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.Comment: 12 pages, 1 table and 3 figures for submission to Journal Physics

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure

    Precautionary Regulation in Europe and the United States: A Quantitative Comparison

    Get PDF
    Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period

    Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV

    Get PDF
    The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure

    Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime

    Full text link
    We present measurements of the ep->ep pi^0 cross section extracted at two values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson Lab Hall A. The kinematic range allows to study the evolution of the extracted hadronic tensor as a function of Q^2 and W. Results will be confronted with Regge inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering has also been attempted

    Compton Scattering Cross Section on the Proton at High Momentum Transfer

    Get PDF
    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.Comment: 5 pages, 5 figure
    corecore