114 research outputs found

    Scaling universalities of kth-nearest neighbor distances on closed manifolds

    Get PDF
    Take N sites distributed randomly and uniformly on a smooth closed surface. We express the expected distance from an arbitrary point on the surface to its kth-nearest neighboring site, in terms of the function A(l) giving the area of a disc of radius l about that point. We then find two universalities. First, for a flat surface, where A(l)=\pi l^2, the k-dependence and the N-dependence separate in . All kth-nearest neighbor distances thus have the same scaling law in N. Second, for a curved surface, the average \int d\mu over the surface is a topological invariant at leading and subleading order in a large N expansion. The 1/N scaling series then depends, up through O(1/N), only on the surface's topology and not on its precise shape. We discuss the case of higher dimensions (d>2), and also interpret our results using Regge calculus.Comment: 14 pages, 2 figures; submitted to Advances in Applied Mathematic

    The random link approximation for the Euclidean traveling salesman problem

    Full text link
    The traveling salesman problem (TSP) consists of finding the length of the shortest closed tour visiting N ``cities''. We consider the Euclidean TSP where the cities are distributed randomly and independently in a d-dimensional unit hypercube. Working with periodic boundary conditions and inspired by a remarkable universality in the kth nearest neighbor distribution, we find for the average optimum tour length = beta_E(d) N^{1-1/d} [1+O(1/N)] with beta_E(2) = 0.7120 +- 0.0002 and beta_E(3) = 0.6979 +- 0.0002. We then derive analytical predictions for these quantities using the random link approximation, where the lengths between cities are taken as independent random variables. From the ``cavity'' equations developed by Krauth, Mezard and Parisi, we calculate the associated random link values beta_RL(d). For d=1,2,3, numerical results show that the random link approximation is a good one, with a discrepancy of less than 2.1% between beta_E(d) and beta_RL(d). For large d, we argue that the approximation is exact up to O(1/d^2) and give a conjecture for beta_E(d), in terms of a power series in 1/d, specifying both leading and subleading coefficients.Comment: 29 pages, 6 figures; formatting and typos correcte

    Deterministic walks in random networks: an application to thesaurus graphs

    Full text link
    In a landscape composed of N randomly distributed sites in Euclidean space, a walker (``tourist'') goes to the nearest one that has not been visited in the last \tau steps. This procedure leads to trajectories composed of a transient part and a final cyclic attractor of period p. The tourist walk presents universal aspects with respect to \tau and can be done in a wide range of networks that can be viewed as ordinal neighborhood graphs. As an example, we show that graphs defined by thesaurus dictionaries share some of the statistical properties of low dimensional (d=2) Euclidean graphs and are easily distinguished from random graphs. This approach furnishes complementary information to the usual clustering coefficient and mean minimum separation length.Comment: 12 pages, 5 figures, revised version submited to Physica A, corrected references to figure

    Mean field and corrections for the Euclidean Minimum Matching problem

    Full text link
    Consider the length LMMEL_{MM}^E of the minimum matching of N points in d-dimensional Euclidean space. Using numerical simulations and the finite size scaling law =βMME(d)N11/d(1+A/N+...) = \beta_{MM}^E(d) N^{1-1/d}(1+A/N+... ), we obtain precise estimates of βMME(d)\beta_{MM}^E(d) for 2d102 \le d \le 10. We then consider the approximation where distance correlations are neglected. This model is solvable and gives at d2d \ge 2 an excellent ``random link'' approximation to βMME(d)\beta_{MM}^E(d). Incorporation of three-link correlations further improves the accuracy, leading to a relative error of 0.4% at d=2 and 3. Finally, the large d behavior of this expansion in link correlations is discussed.Comment: source and one figure. Submitted to PR

    Exploratory Behavior, Trap Models and Glass Transitions

    Get PDF
    A random walk is performed on a disordered landscape composed of NN sites randomly and uniformly distributed inside a dd-dimensional hypercube. The walker hops from one site to another with probability proportional to exp[βE(D)]\exp [- \beta E(D)], where β=1/T\beta = 1/T is the inverse of a formal temperature and E(D)E(D) is an arbitrary cost function which depends on the hop distance DD. Analytic results indicate that, if E(D)=DdE(D) = D^{d} and NN \to \infty, there exists a glass transition at βd=πd/2/Γ(d/2+1)\beta_d = \pi^{d/2}/\Gamma(d/2 + 1). Below TdT_d, the average trapping time diverges and the system falls into an out-of-equilibrium regime with aging phenomena. A L\'evy flight scenario and applications to exploratory behavior are considered.Comment: 4 pages, 1 figure, new versio

    Structure Factor and Electronic Structure of Compressed Liquid Rubidium

    Full text link
    We have applied the quantal hypernetted-chain equations in combination with the Rosenfeld bridge-functional to calculate the atomic and the electronic structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and 6.1 GPa); the calculated structure factors are in good agreement with experimental results measured by Tsuji et al. along the melting curve. We found that the Rb-pseudoatom remains under these high pressures almost unchanged with respect to the pseudoatom at room pressure; thus, the effective ion-ion interaction is practically the same for all pressure-values. We observe that all structure factors calculated for this pressure-variation coincide almost into a single curve if wavenumbers are scaled in units of the Wigner-Seitz radius aa although no corresponding scaling feature is observed in the effective ion-ion interaction.This scaling property of the structure factors signifies that the compression in liquid-rubidium is uniform with increasing pressure; in absolute Q-values this means that the first peak-position (Q1Q_1) of the structure factor increases proportionally to V1/3V^{-1/3} (VV being the specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure

    Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests

    Get PDF
    We present a procedure to solve the inverse Ising problem, that is to find the interactions between a set of binary variables from the measure of their equilibrium correlations. The method consists in constructing and selecting specific clusters of variables, based on their contributions to the cross-entropy of the Ising model. Small contributions are discarded to avoid overfitting and to make the computation tractable. The properties of the cluster expansion and its performances on synthetic data are studied. To make the implementation easier we give the pseudo-code of the algorithm.Comment: Paper submitted to Journal of Statistical Physic

    Structure and thermodynamics of multi-component/multi-Yukawa mixtures

    Full text link
    New small angle scattering experiments reveal new peaks in colloidal systems (S.H. Chen et al) in the structure function S(k), in a region that was inaccessible with older instruments. We propose here general closure of the Ornstein Zernike equation, that is the sum of an arbitrary number of yukawas, and that that will go well beyond the MSA . For this closure we get for the Laplace transform of the pair correlation function . This function is easily transformed into S(k) by replacing the Laplace variable by the Fourier wariable. Although the method is general and valid for polydisperse systems, an explicit continued fraction solution is found for the monodisperse case.Comment: 16 page
    corecore