PHYSICAL REVIEW E 69, 017101 (2004
Exploratory behavior, trap models, and glass transitions
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A random walk is performed on a disordered landscape composed gifes randomly and uniformly
distributed inside al-dimensional hypercube. The walker hops from one site to another with probability
proportional to exp—BE(D)], where=1/T is the inverse of a formal temperature aB(D) is an arbitrary
cost function which depends on the hop distaBceAnalytic results indicate that, E(D)=D" andN—c,
there exists a glass transition @§= 79%/[ (d/2)I'(d/2)]. Below T4, the average trapping time diverges and
the system falls into an out-of-equilibrium regime with aging phenomena.\A flgght scenario and applica-
tions of exploratory behavior are considered.
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This work focus on a surprising connection between twatime diverges and aging phenomena occur. This kind of sce-
apparently disparated fields: models of exploratory behavionario has been called “weak ergodicity breaking” transition
[1,2] and the statistical physics of glass transitions describef6,15].
by trap modeld3—6]. We show that a glass transition may  Consider a random walk on a disordered landscape com-
appear when a walker explores a random landscape with Iggosed ol sites(representing, for example, localized feeding
calized resources. This depends on a well-defined manner sftes as flowers, trees, water holes, islands).efo. perform
the cost function used to weigh the possible movements. We transition to another site, the walker uses a strategy based
have also obtained analytical results for finite size effectsin some arbitrary cost functio(D;;) which depends on the
This model is a simpler version of the stochastic tourist walkdistanceD;; between sites andj. Thus,E(D;;) is similar to
[7-10]. a barrier in trap models.

The stochastic tourist walk also can be viewed as a In our model the random variable 3;; with the prob-
coarse-grained description of protein folding dynamics. Weability distribution function(PDF) P(D;;) fixed by the land-
represent low-lying minima by points in ddimensional scape. This contrasts to usual trap models, witeiis the
configuration space. It is known that, in the glass phase, theandom variable withP(E) given by experimental evi-
configurational distance between minima constitute thelences. Examples of the latter are Gum(eglponential dis-
dominant “barrier” (instead of energetic barrigr&hen con-  tribution for extreme minimg15] and Gaussian PDF for
sidering coarse grained transitions between minima. Anothesupercooled liquid$16]. A further contrast is that one has
possible application of our results is in the study of chargefreedom to choose the cost functi&{D;;). Depending on
diffusion over atoms which are random impurities in a sub-its functional form, several scenarios can be envisaged for
strate[11]. An exponential decay of the transition probability the decay of transition probabilities with distance, for ex-
as the configurational distance increases is a good approximple, exponential, Gaussian, power law, etc. For each value
mation in both cases. of spatial dimensiom, we have found the specific cost func-

Trap models have been used to handle anomalous diffition that creates a glass transition which separates two dis-
sion [12] and a low temperature regime in glass formingtinct (with one of them being out-of-equilibriunexploratory
liquids where the system is supposed to hop amdreg) behaviors.
energy minimgd 13,14). In their simplest versiop4,5], each The exact mean trap timg,(3)) is calculated and a first
statei=1, ... N represents a deep minimum which is en-neighbor approximation is used to reveal the existence of a
dowed with a trap energf; (“energy model”). When the  glass transition, which is characterized by a diverging mean
system escapes from a given state, the model assumes thatmisidence time, g8,=1/Tq= 7¥%/[(d/2)I'(d/2)]. It is inter-
other states have equal probability of being chosen as thesting to point out thaB, has a simple geometrical interpre-
next state. Alternatively, one can assume barrigfsbe-  tation, it is exactly the volume of d-dimensional hyper-
tween the statesandj (“barrier model”) [6]. In such mod-  sphere of unitary radius. A refinement to this calculation is
els, at some temperatufig, there is a transition to an out- considered where finite size and finite sample effects depend
of-equilibrium regime where the system average trappindogarithmically on the number of sites and samples. The resi-

dence time distribution is obtained and we show it follows a
power law and analogies with trap models are discussed. A

*Electronic address: martinez@dfm.ffclrp.usp.br better approximation tdt,(B)) is to substitute all the dis-
"Electronic address: osame@dfm.ffclrp.usp.br tances to their mean values. This procedure drastically im-
*Electronic address: srisau@if.ufrgs.br proves the mean trap time calculation for high temperatures
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compared to the first neighbor approximation. All of theseboundaries one takes the thermodynamical lifNisoo.
approximations are validated by Monte Carlo experiments. Since the set of distances is an ordered BeD,<- - -

Consider a Poisson landscape where spdtiagding”) <Dy, the interdependence of the variables does not allow
sites have coordinates®, with i=1,2,... N and k the factorization of the joint probability. One can make an
=1,2,...4d, that are uniform and randomly chosen in the approximation by considering only the effect on the trapping
interval [0,1]. A normalized Euclidean distance betweentime of transitions to the first neighbor. Consideriag_ ;
sitesi andj: D;; = N*{2{_ [x* —x¥12}12{s introduced to > -A,>E(D;), one can conside |, 'exf —BA]<1 and
simulate a constant density of points since the mean siteeglect this summation, which can also be viewed g3 a
separation is proportional th~'. The walker goes from (high temperatune expansion. In this approximation one
sitei to any other sitg, at each time step, with a “thermal” considers only the nearest neighbor distance FEP )
activation probability: leading to(t,(B))=(t1(B)) where

e~ BE(D)) ® BED)
W, =—5——, 1 t =f dD;P(D,)e’="v, 4

~i="Z.(p) () (t(B)) . 1P(Dy) (4
with normalizationZ;(8) =2 ,e #5(i), and 8 is an ex-  Considering bounds on the influence of the next neighbors it
ternal parameter which is the inverse of a formal temperais possible to show that(8) diverges, with the same expo-
ture. The cost functiorE(D;;) depends on the normalized nent, at the samg as the exact, () as it be shown.
distanceDj; . Clearly, if B—o, the walker remains in the For a spatial Poisson process, one can shb@} that:
present site \;;=1). On the other hand, ii8—0, the P(D,)=e V4PDdVy(D,)/dD;=A4d Dg—le—Achlj, where
walker goes equally to any other site, regardless the distancg1e volume of a hypersphere of radiBsis V4(R)=A4 R
_ Next we show that, although any site has a finite trappingng the geometrical factdthe volume of an unitary radius
tlmehthe ave:agen_re&denr(]:e tirtte) dl;]/erges belofvv"a finite hypersphergis Ay= 792/T (d/2+ 1), with T'(z) being thel
stochasticity levelTy. In this case, the system falls into a . - _ _

Iely BVETg ! Y I function. Thus(ty(B))=Aqd [5dD;D] " elFEC ADY,

out-of-equilibrium regime and aging phenomena appea : ; i , i

Consider discrete time steps. The probability of a walker to FirSt, consider a cost functlonafamny which depends on a

remain in a given sitea is pL(8)=W,_.=1/Z, and the Power of the dlstanceE(Dij)=Dij_, where_a is an adjust-

probability that the walker leaves sita is g.(8)=1 able exponent. For<<d the above integral is finite for any _

—pa(B). Calculations become easier if the distances are re¥@lue, so that, for long times, the system presents usual dif-

labeled according to the ordering with respect sitso that ~ fusive behavior. Conversely, far>d, the above integral is

the nearest neighbor of siteis atD{®), the second nearest aways divergent and the system is in an out-of-equilibrium

neighbor is aiD(za) and so forth. One may writeZ,(8) =1 regime. Howgver, forqzd, thg re_S|d¢nce time and the tail

+exi] - BEDP) SN texd — gA@]  with:  A®=E(D®) of the first neighbor distance distribution compete and a glass
174==1 ] Tl ] transition appears at finite value gt

—E(DP).
Given that at =0, the walker is at sit@, the probability o d
the walker remains there till timeand leaves this site at <t1(ﬁ)>:Addf dD;D§ e Pitha=A)
+1 is given by the geometric distributiafthe first failure 0
aftert successesP4(t) = pL(B)da(B). The residencétrap- U(1—-BIAY) (B<Ay)
ping) time associated to sita is defined as the expected =[w (B=Ay) (5

time: t@(B) =27 ot pL(B)da( B) = Pa(B)/[1—pa(B)]

= exp BE(DP) {1+ =) exd — BAPT). The mean residence time is finite only f@<Ay and it
The mean residence time for one realization of site distridiverges at.

bution is t,(8)=3=_,t(B)/N and the average over the

disorder leads to w2

Bd:Ad:ma (6)

<tr(:3)>=J dD;---dDy-4P(Dy, ... Dy-1) which is just the volume of an unitary radius hypersphere in

d dimensions. For examplg,=2, B,=, B3=4m/3, etc.

t1(B) @) The value ofB; has been also found in RéfL0], where the
N-1 . ’ walker is not allowed to remain at the same site.
1+ JZZ e P4 The residence time divergence @ occurs only in the

limit N—oo and it is difficult to be observed in numerical
3) experiments. Thus, finite size effects are important and they
can be taken into account considering a cutoff vdlyéN)
To calculate(t,(8)), one needs to average over the full in the calculation of the integral leading to E&):
probability density distribution of neighbor distances
P(D4, ...,Dn_1). This is a difficult task once it takes the
boundaries into account. To remove the dependence on the

ty(B) =S,

(t2(B))= ﬁ[l—e(lﬁlAd)Vd(Dc)], @
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10° Ad/ﬁ

] Pp(ty)= (AT (€)

which has a power-law tailt; ¥ with exponent y=1
+Ay/B. As itis well known, the first moment diverges when
the exponent is below.=2, that is,84=A4 [as in Eq.(6)].
4 For d=2 the distance distribution functiorP(D,)
=7TD1exp(—7TD§) presents a Gaussian tail. In this case, a
E well-defined glass transition appears when the cost function
E takes the formE(Dij)=Di2j . Note that no glass transition
. occurs whenE(D;;)=D;;, although very long residence
times exist whernB—oe.
, This caseE(D;;)=D;; is mathematically equivalent to
10 o1 T 2 Bouchaud's trap model for barrier distribution with Gaussian
' tail (with notation Bj;=Dj;). Thus, no glass transition is
B present at finiteT in the latter casg¢16]. To have a glass
FIG. 1. Monte Carlo calculations, fad=1 (triangles andd tranS|rt]|0n ?t finiteT, thel hﬁpp:nghprobablllty In a Gaus§|an
—2 (squarey of (t,) (A, C) and(t,) (A, M) compared to ana- Bouchaud’s trap model should have a Gaussian fa/m;

2
lytical curves Egs(7) and (10) (solid lineg as a function ofg. “eXp(_IBBiJ')' . . .
Used values aréd=100 (with periodic boundary conditions for Now we consider an improved calculation for the mean

measuring distancgsM =10¢ (that is, Np= 106) |eading toD, residence t|métr(ﬁ)> when the cost function is of the form:

~6.91 for d=1 and D,~2.10 for d=2. Inset: Histogram of E(D)=DY The approximation consists to replace the

sampled values oD, for d=2 compared tdD.=[In(Np)/w]*? of  distances to their mean values:D;~(D;)=1I'(j

Eq. (8. +Ud) /(AT (j)]=[]/Aq]Y, the approximation[18,19
['(j+1/d)/T'(j)~j* has been employed. Note that the fac-

where V(D) =A4D¢ is the volume of the largest hyper- tor N* is already present in the definition &f;. This re-

sphere found in the realizations. Note that@ 3,4, the  Placement takes place in the denominator of &yleading

mean residence time {$,(34))=Vq4(D.). to

Consider a Monte Carlo calculation of E@) where the

average is taken oveM landscapes withN points, i.e.,Np B 1—e Al

=MN distancesD; are sampled. The value @, can be (t(B)= 1_e—(N—1)5/Ad<tl('8)>’ (10

estimated from extremal statistics concepts, being the most

probable value of the Gumbel distributi¢a7]. The cutoff  where(t,(B)) is given by Eq.(7). As it can be seen in Fig.

D. is obtained from the conditioNpfp dD;P(D1)=1 1 this curve is in very good agreement with the Monte Carlo

which readsNpexd —Vy(D.)]=1 or calculation of the full residence time of E®).
Note the departure of the trap model equivalence since
In N1/ with the mean distance approximation all the terms in the
= P (8) denominator of Eq.2) have been considered leading to
Ag qualitatively different behaviors in the high temperatuge (
—0) limit.
For d=1, one hasD.,=InNp/2 and for d=2, D, The specific distributionP(D ;) =exd —Vy(D,)] studied
=(InNp /m)*2 here arises from the particular distribution of sites used

In Fig. 1 we show that EQ7) agrees very well with the (Poisson prqces;snevertheless othfar ;celjarios can be envis-
results from Monte Carlo calculations fdt;) (open sym- aged. Consider, for example, a distribution of Pgmt§ where
bols) in one and two dimensions. In Fig. 1 we compare thethe distance PDF has a power-law t&#(D,)<D; > (Levy
first neighbor approximatiorwith finite size effect correc- proces$ [20-22. For any cost function of the fornk
tion) with the Monte Carlo calculation of the full residence =Djj the walker is always in the glass regime. In the first
time (t,) of Eq. (2). We stress that it,) the normalization neighbor approximatior®?(D;) cannot compete with an ex-
Z; is calculated with all the terms expBE(Dy)]. Note that  ponentially increasing residence times ¢3p{) in the inte-
for the high temperature limitd=0) the first neighbor ap- gral of Eq.(4). However, if the walker now uses a cost func-
proximation is poor sincét;(0))=1 while (t,(0))=1/(N  tion of the form E(D;;)=In(1+Djy), both the transition
—1). Nevertheless, for lower temperatures val(iegher3) probability and the residence time have power-law tails:
the first neighbor approximation can be validated. Wi_j=(1+ Dij)‘B/Zi andt;=(1+D;)?. In this case, the

One can find the residence time PB¥;(t,) at inverse average residence timedsl(,B))ocdelD(lﬁ’b) and a glass
temperatureg, in the first neighbor approximation. Chang- transition occurs aBg=b—1.
ing variablesD;= (B tInt)Y [see Eq.(4) with E(Djj) In a destructive foraging scenarigé] a walker wants to
=Didj] in Pg(ty)=P[D4(t,)]dD,/dt; leads to find unvisited feeding sites. One can naively think that the
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walker should avoid glass transitions to reduce trapping We have introduced a simple exploratory behavior model
times by choosingx<<d. Such values ofx produce long where the hop probability between feeding sites depends on
hoppings which favor transitions to unvisited sitése limit  the site distances and a formal temperature that controls the
a—0, B—o such thata3=const produces lwy flights).  stochasticity level. We have presented a simple analytical
Nevertheless this procedure also increases the total travelingeatment that predicts the existence of a glass transition.
cost. We conjecture that the efficiency of this kind of explo-Thjs transition depends on the competition between the
ration is maximized when the cost function allows a glassyalker cost function and the geometry of first neighbor dis-
transition, for instancez(D) =D in the Poisson case. Then, tances. Our model brings glass transitions previously found
the optimal exploratory process may occur at some tempergs ysual trap models to a very simple geometrical context.
ture above the glass temperatdrg. This will be fully dis-  the approximations used give insight on the transition

cussed elsewhere. {)nechanism and accord well with results from numerical ex-

Finally, we compare the present to previous mode_ls Oberiments. Finite size effects depend logarithmically on the
exploratory behavior. If one prohibits the walker to remain atnumber of sites and samples for layeand M. The mean

th;é??ﬁ;?ﬁ;ﬁ’éﬁzfos)i;h?efiﬂgzmﬁgéa!rfr;ﬁg 2;2;%3:5?}:\]; neighbor distance approximation on the calculation of the
b 9 : ean residence time extends the trap model approximation

found similar glass transition§l0]. If one prohibits the - : . :
walker to go to sites within a self-avoiding window of the where only the first neighbor is considered.

past visited sites, the traps are cycles of diverse periods The authors acknowledge useful conversations with A.
[7-9]. In the latter case we also expect that the escapingaliri, N. Caticha, R. Dickman, J. R. Drugowich de e}
from cycles is done through a glass transition which is aM. A. Idiart, V. L. Libero, G. F. Lima, and R. da Silva. O.K.
theme for a future study. acknowledges support from FAPESP.
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