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Exploratory behavior, trap models, and glass transitions

Alexandre S. Martinez* and Osame Kinouchi†

Faculdade de Filosofia, Cieˆncias e Letras de Ribeira˜o Preto, Universidade de Sa˜o Paulo, Avenida Bandeirantes 3900,
14040-901 Ribeira˜o Preto, Sa˜o Paulo, Brazil

Sebastian Risau-Gusman‡

Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
~Received 2 September 2003; published 20 January 2004!

A random walk is performed on a disordered landscape composed ofN sites randomly and uniformly
distributed inside ad-dimensional hypercube. The walker hops from one site to another with probability
proportional to exp@2bE(D)#, whereb51/T is the inverse of a formal temperature andE(D) is an arbitrary
cost function which depends on the hop distanceD. Analytic results indicate that, ifE(D)5Dd andN→`,
there exists a glass transition atbd5pd/2/@(d/2)G(d/2)#. Below Td , the average trapping time diverges and
the system falls into an out-of-equilibrium regime with aging phenomena. A Le´vy flight scenario and applica-
tions of exploratory behavior are considered.
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This work focus on a surprising connection between t
apparently disparated fields: models of exploratory beha
@1,2# and the statistical physics of glass transitions descri
by trap models@3–6#. We show that a glass transition ma
appear when a walker explores a random landscape with
calized resources. This depends on a well-defined mann
the cost function used to weigh the possible movements.
have also obtained analytical results for finite size effe
This model is a simpler version of the stochastic tourist w
@7–10#.

The stochastic tourist walk also can be viewed as
coarse-grained description of protein folding dynamics.
represent low-lying minima by points in ad-dimensional
configuration space. It is known that, in the glass phase,
configurational distance between minima constitute
dominant ‘‘barrier’’~instead of energetic barriers! when con-
sidering coarse grained transitions between minima. Ano
possible application of our results is in the study of cha
diffusion over atoms which are random impurities in a su
strate@11#. An exponential decay of the transition probabili
as the configurational distance increases is a good app
mation in both cases.

Trap models have been used to handle anomalous d
sion @12# and a low temperature regime in glass formi
liquids where the system is supposed to hop among~free!
energy minima@13,14#. In their simplest version@4,5#, each
state i 51, . . . ,N represents a deep minimum which is e
dowed with a trap energyEi ~‘‘energy model’’!. When the
system escapes from a given state, the model assumes th
other states have equal probability of being chosen as
next state. Alternatively, one can assume barriersBi j be-
tween the statesi and j ~‘‘barrier model’’! @6#. In such mod-
els, at some temperatureTc , there is a transition to an out
of-equilibrium regime where the system average trapp

*Electronic address: martinez@dfm.ffclrp.usp.br
†Electronic address: osame@dfm.ffclrp.usp.br
‡Electronic address: srisau@if.ufrgs.br
1063-651X/2004/69~1!/017101~4!/$22.50 69 0171
o
r
d

o-
of
e

s.
k

a
e

e
e

er
e
-

xi-

u-

t all
he

g

time diverges and aging phenomena occur. This kind of s
nario has been called ‘‘weak ergodicity breaking’’ transitio
@6,15#.

Consider a random walk on a disordered landscape c
posed ofN sites~representing, for example, localized feedin
sites as flowers, trees, water holes, islands, etc.!. To perform
a transition to another site, the walker uses a strategy ba
in some arbitrary cost functionE(Di j ) which depends on the
distanceDi j between sitesi and j. Thus,E(Di j ) is similar to
a barrier in trap models.

In our model the random variable isDi j with the prob-
ability distribution function~PDF! P(Di j ) fixed by the land-
scape. This contrasts to usual trap models, whereE is the
random variable withP(E) given by experimental evi-
dences. Examples of the latter are Gumbel~exponential! dis-
tribution for extreme minima@15# and Gaussian PDF fo
supercooled liquids@16#. A further contrast is that one ha
freedom to choose the cost functionE(Di j ). Depending on
its functional form, several scenarios can be envisaged
the decay of transition probabilities with distance, for e
ample, exponential, Gaussian, power law, etc. For each v
of spatial dimensiond, we have found the specific cost func
tion that creates a glass transition which separates two
tinct ~with one of them being out-of-equilibrium! exploratory
behaviors.

The exact mean trap timêt r(b)& is calculated and a firs
neighbor approximation is used to reveal the existence o
glass transition, which is characterized by a diverging me
residence time, atbd51/Td5pd/2/@(d/2)G(d/2)#. It is inter-
esting to point out thatbd has a simple geometrical interpre
tation, it is exactly the volume of ad-dimensional hyper-
sphere of unitary radius. A refinement to this calculation
considered where finite size and finite sample effects dep
logarithmically on the number of sites and samples. The r
dence time distribution is obtained and we show it follows
power law and analogies with trap models are discusse
better approximation tôt r(b)& is to substitute all the dis-
tances to their mean values. This procedure drastically
proves the mean trap time calculation for high temperatu
©2004 The American Physical Society01-1
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compared to the first neighbor approximation. All of the
approximations are validated by Monte Carlo experimen

Consider a Poisson landscape where special~‘‘feeding’’ !
sites have coordinatesxi

(k) , with i 51,2, . . . ,N and k
51,2, . . . ,d, that are uniform and randomly chosen in t
interval @0,1#. A normalized Euclidean distance betwe
sitesi andj: Di j 5N1/d$(k51

d @xi
(k)2xj

(k)#2%1/2 is introduced to
simulate a constant density of points since the mean
separation is proportional toN21/d. The walker goes from
site i to any other sitej, at each time step, with a ‘‘thermal
activation probability:

Wi→ j5
e2bE(Di j )

Zi~b!
, ~1!

with normalizationZi(b)5( j 51
N e2bE(Di j ), and b is an ex-

ternal parameter which is the inverse of a formal tempe
ture. The cost functionE(Di j ) depends on the normalize
distanceDi j . Clearly, if b→`, the walker remains in the
present site (Wii 51). On the other hand, ifb→0, the
walker goes equally to any other site, regardless the dista

Next we show that, although any site has a finite trapp
time, the average residence time^t r& diverges below a finite
stochasticity levelTd . In this case, the system falls into
out-of-equilibrium regime and aging phenomena appe
Consider discrete time steps. The probability of a walker
remain in a given sitea is pa(b)[Wa→a51/Za and the
probability that the walker leaves sitea is qa(b)51
2pa(b). Calculations become easier if the distances are
labeled according to the ordering with respect sitea, so that
the nearest neighbor of sitea is at D1

(a) , the second neares
neighbor is atD2

(a) and so forth. One may write:Za(b)51
1exp@2bE(D1

(a))#(j51
N21exp@2bDj

(a)# with: D j
(a)5E(D j

(a))
2E(D1

(a)).
Given that att50, the walker is at sitea, the probability

the walker remains there till timet and leaves this site att
11 is given by the geometric distribution~the first failure
after t successes!: Pb(t)5pa

t (b)qa(b). The residence~trap-
ping! time associated to sitea is defined as the expecte
time: t r

(a)(b)5( t50
` t pa

t (b)qa(b)5pa(b)/@12pa(b)#
5exp@bE(D1

(a))#$11(j52
N21exp@2bDj

(a)#%.
The mean residence time for one realization of site dis

bution is t r(b)5(a51
N tr

(a)(b)/N and the average over th
disorder leads to

^t r~b!&5E dD1•••dDN21P~D1 , . . . ,DN21!

3
t1~b!

11 (
j 52

N21

e2bD j

, ~2!

t1~b![ebE(D1). ~3!

To calculate^t r(b)&, one needs to average over the fu
probability density distribution of neighbor distanc
P(D1 , . . . ,DN21). This is a difficult task once it takes th
boundaries into account. To remove the dependence on
01710
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boundaries one takes the thermodynamical limitN→`.
Since the set of distances is an ordered setD1,D2,•••

,DN , the interdependence of the variables does not al
the factorization of the joint probability. One can make
approximation by considering only the effect on the trapp
time of transitions to the first neighbor. ConsideringDN21

.•••D2.E(D1), one can consider( j 52
N21exp@2bDj#!1 and

neglect this summation, which can also be viewed as ab
~high temperature! expansion. In this approximation on
considers only the nearest neighbor distance PDFP(D1)
leading to^t r(b)&>^t1(b)& where

^t1~b!&5E
0

`

dD1P~D1!ebE(D1). ~4!

Considering bounds on the influence of the next neighbo
is possible to show thatt1(b) diverges, with the same expo
nent, at the sameb as the exactt r(b) as it be shown.

For a spatial Poisson process, one can show@10# that:

P(D1)5e2Vd(D1)dVd(D1)/dD15Ad d D1
d21e2Ad D1

d
, where

the volume of a hypersphere of radiusR is Vd(R)5Ad Rd

and the geometrical factor~the volume of an unitary radius
hypersphere! is Ad5pd/2/G(d/211), with G(z) being theG

function. Thuŝ t1(b)&5Add *0
`dD1D1

d21 e[bE(D1)2AdD1
d] .

First, consider a cost function family which depends on
power of the distance:E(Di j )5Di j

a , wherea is an adjust-
able exponent. Fora,d the above integral is finite for anyb
value, so that, for long times, the system presents usual
fusive behavior. Conversely, fora.d, the above integral is
always divergent and the system is in an out-of-equilibriu
regime. However, fora5d, the residence time and the ta
of the first neighbor distance distribution compete and a g
transition appears at finite value ofb:

^t1~b!&5AddE
0

`

dD1D1
d21 e2D1

d(Ad2b)

5H 1/~12b/Ad! ~b,Ad!

` ~b>Ad!.
~5!

The mean residence time is finite only forb,Ad and it
diverges at.

bd5Ad5
pd/2

G~d/211!
, ~6!

which is just the volume of an unitary radius hypersphere
d dimensions. For example,b152, b25p, b354p/3, etc.
The value ofb1 has been also found in Ref.@10#, where the
walker is not allowed to remain at the same site.

The residence time divergence atbd occurs only in the
limit N→` and it is difficult to be observed in numerica
experiments. Thus, finite size effects are important and t
can be taken into account considering a cutoff valueDc(N)
in the calculation of the integral leading to Eq.~5!:

^t1~b!&5
1

12b/Ad
@12e2(12b/Ad)Vd(Dc)#, ~7!
1-2
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where Vd(Dc)5AdDc
d is the volume of the largest hype

sphere found in the realizations. Note that atb5bd , the
mean residence time iŝt1(bd)&5Vd(Dc).

Consider a Monte Carlo calculation of Eq.~4! where the
average is taken overM landscapes withN points, i.e.,ND
5MN distancesD1 are sampled. The value ofDc can be
estimated from extremal statistics concepts, being the m
probable value of the Gumbel distribution@17#. The cutoff
Dc is obtained from the conditionND*Dc

` dD1P(D1)51

which readsNDexp@2Vd(Dc)#51 or

Dc5F ln ND

Ad
G1/d

. ~8!

For d51, one has Dc5 ln ND/2 and for d52, Dc
5(ln ND /p)1/2.

In Fig. 1 we show that Eq.~7! agrees very well with the
results from Monte Carlo calculations for^t1& ~open sym-
bols! in one and two dimensions. In Fig. 1 we compare
first neighbor approximation~with finite size effect correc-
tion! with the Monte Carlo calculation of the full residenc
time ^t r& of Eq. ~2!. We stress that in̂t r& the normalization
Zi is calculated with all the terms exp@2bE(Dk)#. Note that
for the high temperature limit (b50) the first neighbor ap-
proximation is poor sincêt1(0)&51 while ^t r(0)&51/(N
21). Nevertheless, for lower temperatures values~higherb)
the first neighbor approximation can be validated.

One can find the residence time PDFPb(t1) at inverse
temperatureb, in the first neighbor approximation. Chan
ing variablesD15(b21ln t1)

1/d @see Eq.~4! with E(Di j )
5Di j

d ] in Pb(t1)5P@D1(t1)#dD1 /dt1 leads to

FIG. 1. Monte Carlo calculations, ford51 ~triangles! and d
52 ~squares!, of ^t1& (n, h) and ^t r& (m, j) compared to ana-
lytical curves Eqs.~7! and ~10! ~solid lines! as a function ofb.
Used values areN5100 ~with periodic boundary conditions fo
measuring distances!, M5104 ~that is, ND5106) leading to Dc

'6.91 for d51 and Dc'2.10 for d52. Inset: Histogram of
sampled values ofD1 for d52 compared toDc5@ ln(ND)/p#1/2 of
Eq. ~8!.
01710
st

e

Pb~ t1!5
Ad /b

t1
(11Ad /b) , ~9!

which has a power-law tailt1
2g with exponent g51

1Ad /b. As it is well known, the first moment diverges whe
the exponent is belowgc52, that is,bd5Ad @as in Eq.~6!#.

For d52 the distance distribution functionP(D1)
5pD1exp(2pD1

2) presents a Gaussian tail. In this case
well-defined glass transition appears when the cost func
takes the formE(Di j )5Di j

2 . Note that no glass transition
occurs whenE(Di j )5Di j , although very long residenc
times exist whenb→`.

This caseE(Di j )5Di j is mathematically equivalent to
Bouchaud’s trap model for barrier distribution with Gaussi
tail ~with notation Bi j 5Di j ). Thus, no glass transition i
present at finiteT in the latter case@16#. To have a glass
transition at finiteT, the hopping probability in a Gaussia
Bouchaud’s trap model should have a Gaussian formWi→ j

}exp(2bBij
2).

Now we consider an improved calculation for the me
residence timêt r(b)& when the cost function is of the form
E(D)5Dd. The approximation consists to replace t
distances to their mean values:D j'^D j&5G( j
11/d)/@Ad

1/dG( j )#5@ j /Ad#1/d, the approximation @18,19#
G( j 11/d)/G( j )' j 1/d has been employed. Note that the fa
tor N1/d is already present in the definition ofD j . This re-
placement takes place in the denominator of Eq.~2! leading
to

^t r~b!&5
12e2b/Ad

12e2(N21)b/Ad
^t1~b!&, ~10!

where^t1(b)& is given by Eq.~7!. As it can be seen in Fig
1 this curve is in very good agreement with the Monte Ca
calculation of the full residence time of Eq.~2!.

Note the departure of the trap model equivalence si
with the mean distance approximation all the terms in
denominator of Eq.~2! have been considered leading
qualitatively different behaviors in the high temperatureb
→0) limit.

The specific distributionP(D1)5exp@2Vd(D1)# studied
here arises from the particular distribution of sites us
~Poisson process!, nevertheless other scenarios can be en
aged. Consider, for example, a distribution of points wh
the distance PDF has a power-law tail,P(D1)}D1

2b ~Lévy
process! @20–22#. For any cost function of the formE
5Di j

a the walker is always in the glass regime. In the fi
neighbor approximation,P(D1) cannot compete with an ex
ponentially increasing residence times exp(bD1

a) in the inte-
gral of Eq.~4!. However, if the walker now uses a cost fun
tion of the form E(Di j )5 ln(11Dij), both the transition
probability and the residence time have power-law ta
Wi→ j5(11Di j )

2b/Zi and t15(11D1)b. In this case, the
average residence time is^t1(b)&}*dD1D1

(b2b) and a glass
transition occurs atbd5b21.

In a destructive foraging scenario@1# a walker wants to
find unvisited feeding sites. One can naively think that t
1-3
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walker should avoid glass transitions to reduce trapp
times by choosinga,d. Such values ofa produce long
hoppings which favor transitions to unvisited sites~the limit
a→0, b→` such thatab5const produces Le´vy flights!.
Nevertheless this procedure also increases the total trav
cost. We conjecture that the efficiency of this kind of exp
ration is maximized when the cost function allows a gla
transition, for instance,E(D)5Dd in the Poisson case. Then
the optimal exploratory process may occur at some temp
ture above the glass temperatureTd . This will be fully dis-
cussed elsewhere.

Finally, we compare the present to previous models
exploratory behavior. If one prohibits the walker to remain
the same site (Wa→a50) the fundamental traps are cycles
period two instead of single sites. Also in this case we h
found similar glass transitions@10#. If one prohibits the
walker to go to sites within a self-avoiding window of thet
past visited sites, the traps are cycles of diverse per
@7–9#. In the latter case we also expect that the escap
from cycles is done through a glass transition which is
theme for a future study.
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We have introduced a simple exploratory behavior mo
where the hop probability between feeding sites depends
the site distances and a formal temperature that controls
stochasticity level. We have presented a simple analyt
treatment that predicts the existence of a glass transit
This transition depends on the competition between
walker cost function and the geometry of first neighbor d
tances. Our model brings glass transitions previously fou
in usual trap models to a very simple geometrical conte
The approximations used give insight on the transit
mechanism and accord well with results from numerical
periments. Finite size effects depend logarithmically on
number of sites and samples for largeN and M. The mean
neighbor distance approximation on the calculation of
mean residence time extends the trap model approxima
where only the first neighbor is considered.
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