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Adaptive cluster expansion for the inverse Ising problem:

convergence, algorithm and tests
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2 Laboratoire de Physique Statistique de l’ENS, CNRS & UPMC, 24 rue Lhomond, 75005 Paris, France
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We present a procedure to solve the inverse Ising problem, that is to find the interactions between
a set of binary variables from the measure of their equilibrium correlations. The method consists
in constructing and selecting specific clusters of variables, based on their contributions to the cross-
entropy of the Ising model. Small contributions are discarded to avoid overfitting and to make the
computation tractable. The properties of the cluster expansion and its performances on synthetic
data are studied. To make the implementation easier we give the pseudo-code of the algorithm.

I. INTRODUCTION

The Ising model is a paradigm of statistical physics, and has been extensively studied to understand the equilibrium
properties and the nature of the phase transitions in various systems in condensed matter [1]. In its usual formulation,
the Ising model is defined over a set of N binary variables σi, with i = 1, 2, . . . , N . The variables, called spins, are
submitted to a set of N local fields, hi, and of 1

2N(N − 1) pairwise couplings, Jij . The observables of the model, such
as the average values of the spins or of the spin-spin correlations over the Gibbs measure,

〈σi〉 , 〈σkσl〉 , (1)

are well-defined and can be calculated from the knowledge of those interaction parameters. We will refer to the task
of calculating (1) given the interaction parameters as to the direct Ising problem.
In many experimental cases, the interaction parameters are unknown, while the values of observables can be

estimated from measurements. A natural question is to know if and how the interaction parameters can be deduced
from the data ([2–7]). When the coupling matrix is known a priori to have a specific and simple structure, this question
can be answered with an ordinary fit. For instance, in a two-dimensional and uniform ferromagnet, all couplings vanish
but between neighbors on the lattice, and Jij = J for contiguous sites i and j. In such a case, the observable such as
the average correlation between neighboring spins, c, depends on a single parameter, J . The measurement of c gives
a direct access to a value of J . However, data coming from complex systems arising in biology, sociology, finance, ...
can generally not be interpreted with such a simple Ising model, and the fit procedure is much more complicated for
two reasons. First, in the absence of any prior knowledge about the interaction network, the number of interaction
parameters Jij to be inferred scales quadratically with the system size N , and can be very large. Secondly, the quality
of the data is a crucial issue. Experimental data are plagued by noise, coming either from the measurement apparatus
or from imperfect sampling. The task of fitting a very large number of interaction parameters from ’noisy’ data has
received much attention in the statistics community, under the name of high-dimensional inference [13].
To be more specific, the inverse Ising problem is defined as follows. Assume that a set of B configurations στ =

{στ
1 , σ

τ
2 , . . . , σ

τ
N}, with τ = 1, 2, . . . , B are available from measurements. We compute the empirical 1- and 2-point

averages through

pi =
1

B

B
∑

τ=1

στ
i , pkl =

1

B

B
∑

τ=1

στ
k σ

τ
l . (2)

The inverse Ising problem consists in finding the values of the N local fields, hi, and of the 1
2N(N − 1) interactions,

Jij , such that the individual and pairwise frequencies of the spins (1) defined from the Gibbs measure coincide with
their empirical counterparts, pi and pkl. While the Gibbs measure corresponding to the Ising model is by no means
the unique measure allowing one to reproduce the data pi and pkl, it is the distribution with the largest entropy doing
so [9]. In other words, the Ising model is the least constrained model capable of matching the empirical values of
the 1- and 2-point observables. This property explains the recent surge of interest in defining and solving the inverse
Ising problem in the context of the analysis of biological, e.g. neurobiological [2–4, 10] and proteomic [5, 6] data.
As a result of its generality, the inverse Ising problem has been studied in various fields under different names,

such as Boltzmann machine learning in learning theory [11, 12] or graphical model selection in statistical inference
[13, 15, 16]. While the research field is currently very active, the diversity of the tools and, sometimes, of the goals
make somewhat difficult to compare the results obtained across the disciplines. Several variants of the inverse Ising
problem can be defined:
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• A: find the interaction network from a set of spin configurations στ . It is generally assumed in the graphical
model community that the Ising model is exact, that is, that the underlying distribution of the data is truly an
Ising model with unknown interaction parameters J. The question is to find which interactions Jij are non zero
(or larger than some Jmin is absolute value), and how many configurations (value of B) should be sampled to
achieve this goal with acceptable probability.

• B: find the interactions Jij and the fields hi from the frequencies pi, pij only. Those frequencies should be
reproduced within a prescribed accuracy, ǫ, not too small (compared to the error on the data) to avoid overfitting.
Note that in general the Ising model is not the true underlying model for the data here; it is only the model
with maximal entropy given the constraints on 1- and 2-point correlations.

• C: same as B, but in addition we want to know the entropy (at fixed individual and pairwise frequencies), which
measures how many configurations σ really contribute to the Gibbs distribution of the Ising model. Computing
the entropy is generally intractable for the direct Ising problem, unless correlations decay fast enough [17].

Variants B and C are harder than A: full spin configurations give access to all K-spin correlations, a knowledge which
can be used to design fast network structure inference algorithm. Recently, a procedure to solve problem C was
proposed, based on ideas and techniques coming from statistical physics [8]. The purpose of the present paper is to
discuss its performances and limitations.
It is essential to be aware of the presence of noise in the data, e.g. due to the imperfect sampling (finite number

B of configurations). A potential risk is overfitting: the network of interactions we find at the end of the inference
process could reproduce the mere noisy data, rather than the ’true’ interactions. How can one disentangle noise from
signal in the data? A popular approach in the statistics community is to require that the inferred interaction network
be sparse. The rationale for imposing sparsity is two-fold. First, physical lattices are very sparse, and connect only
close sites in the space; it is possible but not at all obvious that networks modeling other e.g. biological data enjoy
a similar property. Secondly, an Ising model with a sparse interaction network reproducing a set of correlations is
a sparing representation of the statistics of the data, and, in much the same spirit as the minimal message length
approach [14], should be preferred to models with denser networks. The appeal of the approach is largely due to the
fact that imposing sparsity is computationally tractable.
The criterion required by our procedure is not that the interaction network should be sparse, but that the inverse

Ising problem should be well-conditioned. To illustrate this notion, consider a set of data, i.e. of frequencies pi, pkl,
and assume one has found the solution hi, Jkl to the corresponding inverse Ising problem. Let us now slightly modify
one or a few frequencies, say, p12 → p′12 = p12 + δp12, and solve again the corresponding inverse Ising problem, with
the results h′i, J

′
kl. Let δJkl = J ′kl − Jkl and δhi = h′i − hi measure the response of the interaction parameters to the

small modification of p12 alone. Two extreme cases are:

• Localized response: the response is restricted to the parameters involving spins 1 and 2 only, i.e. δh1, δh2, δJ12 6=
0; it vanishes for all the other parameters.

• Extended response: the response spreads all over the spin system, and all the quantities δhi, δJkl are non-zero.

Intermediate cases will generically be encountered, and are symbolized in Fig. 1(a)&(b). For instance, if the response
is non-zero over a small number of parameters only, which define a ’neighborhood’ of the spins 1, 2, we will consider
it is localized. Obviously, the notion of ’smallness’ cannot be rigorously defined here, unless the system size N can be
made arbitrarily large and sent to infinity.
Drawing our inspiration from the vocabulary of numerical analysis, we will say that the inverse Ising problem is

well-conditioned if the response is localized. For a well-conditioned problem, a small change of one or a few variables
essentially affects one or a few interaction parameters. On the contrary, most if not all interaction parameters of
a ill-conditioned inverse Ising problem are affected by an elementary modification of the data. This notion must
be distinguished from the concept of ill-posed problem. As we will see in Section II, the inverse Ising problem is
always well-posed, once an appropriate regularization is introduced: given the frequencies, there exists a unique set
of interaction parameters reproducing those data, regardless of how hard it is to compute.
Not all inverse Ising problems are well-conditioned. However, it is our opinion that only those ones should be

solved. The reason is that, in generic experimental situations, only a (small) region of the system is accessible.
Solving the inverse problem attached to this sub-system makes sense only if the problem is well-conditioned. If it is
ill-conditioned, extending even by a bit the sub-system would considerably affect the values of most of the inferred
parameters (Fig. 1(c)). Hence, the interaction parameters would be very much dependent on the part of the system
which is not measured! Such a possibility simply means that the inverse problem, though mathematically well-posed,
is not meaningful.
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FIG. 1: Schematic representation of a well-conditioned (a) and an ill-conditioned (b) inverse Ising problems. The gray areas
symbolize the set of spins (full dots) whose interactions (links) and fields are affected by a change of the frequency p12 of
spins 1 and 2. The response is localized in (a) and extended in (b). Experiments usually measure a restricted part of the
system (dashed contour) only (c). Increasing the size of the measured sub-system, e.g. by including the frequencies of the
extra-variables 3 and 4, will modify most of the inferred interaction parameters if the problem is ill-conditioned.

Interestingly, the response of the interactions to a change of a few correlations can be localized, while the response
of the correlations to a change of a few interactions is extended. An example is given by ’critical’ Ising models, where
correlations extend over the whole system. However, the corresponding inverse Ising problem may be well-conditioned.
The presence of noise in the data considerably affects the status of the inverse Ising problem. As we will see later,

even well-conditioned problems in the limit of perfect sampling (B → ∞) become ill-conditioned as soon as sampling
is imperfect (finite B). The same statement holds for the sparsity-based criterion mentioned above: when data are
generated by a sparse interaction network, the solution to the inverse Ising model is not sparse as a consequence of
imperfect sampling. Only the presence of an explicit and additional regularization forces the solution to be sparse.
In much the same way, the procedure we present hereafter builds a well-conditioned inverse Ising problem, which
prevents overfitting of the noise. This procedure is based on the expansion of the entropy at fixed frequencies in
clusters of spins, a notion closely related to the neighborhoods appearing in the localized responses.
The plan of the article is as follows. In Section II we give the notations and precise definitions of the inverse

Ising problem, and briefly review some of the resolution procedures in the literature. In Section III, we explain how
the entropy can be expanded as a sum of contributions, one for each cluster (or sub-set) of spins, and review the
properties of those entropic contributions. The procedure to truncate the expansion and keep only relevant clusters
is discussed in Section IV. The pseudo-codes and details necessary for the implementation of the algorithm can be
found in Section V. Applications to artificial data are discussed at length in Section VI. Finally, Section VII presents
some perspectives and conclusions. To improve the readability of the paper most technical details have been relegated
to technical appendices.

II. THE INVERSE ISING PROBLEM: FORMULATIONS AND ISSUES

A. Maximum Entropy Principle formulation

We consider a system of N binary variables, σi = 0, 1, where i = 1, 2, . . . , N . The average values of the variables, pi,
and of their correlations, pkl, are measured, for instance through the empirical average over B sampled configurations
of the system, see equations (2). As the correlations pkl are obtained from the empirical measure, the problem is
realizable [18]. Let p = {pi, pkl} denote the data. The Maximum Entropy Principle (MEP) [9] postulates that the
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probabilistic model P (σ) should maximize the entropy S of the distribution P under the constraints
∑

σ

P (σ) = 1 ,
∑

σ

P (σ) σi = pi ,
∑

σ

P (σ) σk σl = pkl . (3)

In practice these constraints are enforced by the Lagrange multipliers λ and J = {hi, Jkl}. The maximal entropy
is [50]

S(p) = min
λ,J

max
P (σ)

[

−
∑

σ

P (σ) logP (σ) + λ

(

∑

σ

P (σ)− 1

)

+
∑

i

hi

(

∑

σ

P (σ)σi − pi

)

+
∑

k<l

Jkl

(

∑

σ

P (σ)σk σl − pkl

)]

. (4)

The maximization condition over P shows that the MEP probability corresponds to the Gibbs measure PJ of the
celebrated Ising model,

PJ[σ] =
e−HIsing [σ|J]

Z[J]
(5)

where the energy function is

HIsing [σ|J] = −
∑

i

hi σi −
∑

k<l

Jkl σk σl (6)

and Z[J] =
∑

σ
exp(−HIsing [σ|J]) denotes the partition function. The values of the couplings and fields [51] are then

found through the minimization of

SIsing [J|p] = logZ[J]−
∑

i

hi pi −
∑

k<l

Jkl pkl . (7)

over J. The minimal value of SIsing coincides with S defined in (4).
The cross-entropy SIsing has a simple interpretation in terms of the Kullback-Leibler divergence between the Ising

distribution PJ[σ] and the empirical measure over the observed configurations, Pobs[σ]. Assume B configurations of
the N variables, στ , with τ = 1, 2, . . . , B, are sampled. We define the empirical distribution through

Pobs[σ] =
1

B

B
∑

τ=1

δσ,στ , (8)

where δ denotes the N -dimensional Kronecker delta function. It is easy to check from (7) that

SIsing[J|p] = −
∑

σ

Pobs[σ] logPJ[σ] = −
∑

σ

Pobs[σ] logPobs[σ] +D
(

Pobs||PJ

)

, (9)

where D denotes the KL-divergence. Hence, the minimization procedure over J ensures that the ’best’ Ising measure
(as close as possible to the empirical measure) is found.

B. Regularization and Bayesian formulation

We consider the Hessian of the cross-entropy SIsing , also called Fisher information matrix, which is a matrix of
dimension 1

2N(N + 1), defined through

χ =
∂2SIsing

∂J∂J
=

(

χi,i′ χi,k′l′

χkl,i′ χkl,k′l′

)

. (10)

The entries of χ are obtained upon repeated differentiations of the partition function Z[J], and can be expressed in
terms of averages over the Ising Gibbs measure 〈·〉J,

χi,i′ = 〈σiσi′ 〉J − 〈σi〉J〈σi′ 〉J , (11)

χi,k′l′ = 〈σiσk′σl′ 〉J − 〈σi〉J〈σk′σl′〉J ,

χkl,k′l′ = 〈σkσlσk′σl′ 〉J − 〈σkσl〉J〈σk′σl′〉J .
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Consider now an arbitrary 1
2N(N + 1)-dimensional vector x = {xi, xkl}. The quadratic form

x† · χ · x =

〈(

∑

i

xi

(

σi − 〈σi〉J
)

+
∑

k<l

xkl

(

σkσl − 〈σkσl〉J
)

)2〉

J

(12)

is semi-definite positive. Hence, SIsing is a convex function.
However the minimum is not guaranteed to be unique if χ has zero modes, nor to be finite. To circumvent those

difficulties, one can ’regularize’ the cross-entropy SIsing by adding a quadratic term in the interaction parameters,
which forces χ to become definite positive, and ensures the uniqueness and finiteness of the minimum of SIsing . In
many applications, no regularization is needed for the fields hi. The reason can be understood intuitively as follows.
Consider a data set where all variables are independent, with small but strictly positive means pi. Then, the empirical
average products, pkl, may vanish if the number B of sampled configurations is not much larger than (pkpl)

−1. This
condition is often violated in practical applications, e.g. the analysis of neurobiological or protein data [2, 5, 10].
Hence, poor sampling may produce infinite negative couplings. We therefore add the following regularization term to
SIsing,

γ
∑

k<l

J2
kl pk(1− pk)pl(1− pl) . (13)

The precise expression of the regularization term is somewhat arbitrary, and is a matter of convenience. The depen-
dence on the pi’s in (13) will be explained in Section III B. Other regularization schemes, based on the L1 norm rather
than on the L2 norm are possible, such as

γ
∑

k<l

|Jkl|
√

pk(1− pk)pl(1− pl) . (14)

The above regularization is especially popular among the graphical model selection community [15], and favors sparse
coupling networks, i.e. with many zero interactions.
The introduction of a regularization is natural in the context of Bayesian inference. The Gibbs probability PJ[σ]

defines the likelihood of a configuration σ. The likelihood of a set of B independently drawn configurations στ is
given by the product of the likelihoods of each configuration. The posterior probability of the parameters (fields and
couplings) J given the configurations στ , τ = 1, 2, . . . , B, is, according to Bayes’ rule,

Ppost[J|{στ}] ∝
B
∏

τ=1

PJ[σ
τ ] P0[J] , (15)

up to an irrelevant J-independent multiplicative factor. In the equation above, P0 is a prior probability over the
couplings and fields, encoding the knowledge about their values in the absence of any data. Taking the logarithm of
(15), we obtain, up to an additive J-independent constant,

logPpost[J|{στ}] = −B SIsing [J|p] + logP0[J] . (16)

Hence, the most likely value for the parameters J is the one minimizing SIsing [J|p]− 1
B logP0[J]. The regularization

terms (13) and (14) then correspond to, respectively, Gaussian and exponential priors over the parameters. In addition,
as the prior is independent of the number B of configurations, we expect the strength γ to scale as 1

B . The optimal
value of γ can be also determined based on Bayesian criteria [10, 39] (Appendix A).
We emphasize that the Bayesian framework changes the scope of the inference. While the MEP aims to reproduce

the data, the presence of a regularization term leads to a compromise between two different objectives: finding an
Ising model whose observables (one- and two-point functions) are close to the empirical values and ensuring that
the interaction parameters J have a large prior probability P0. In other words, a compromise is sought between the
faithfulness to the data and the prior knowledge about the solution. The latter is especially important in the case
of poor sampling (small value of B or data corrupted by noise). For instance, the regularization term based on the
L1–norm (14) generally produces more couplings equal to zero than its L2–norm counterpart (13). This property
is desirable if one a priori knows that the interaction graph is sparse. Hence, the introduction of a regularization
term can be interpreted as an attempt to approximately solve the inverse Ising problem while fulfilling an important
constraint about the structure of the solution. We will discuss the nature of the structural constraints corresponding
to our adaptive cluster algorithm in Section IVC.
Knowledge of the inverse of the Fisher information matrix, χ−1, allows for the computation of the statistical

fluctuations of the inferred fields and couplings due to a finite number B of sampled configurations. According to
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the asymptotic theory of inference, the posterior probability Ppost[J|{στ}] over the fields and couplings becomes,
as B gets very large, a normal law centered in the minimum of SIsing [J|p]. The covariance matrix of this normal
law is simply given by 1

B χ−1. Consequently the standard deviations of the fields hi and of the couplings Jkl are,
respectively,

δhi =

√

1

B
(χ−1)i,i , δJkl =

√

1

B
(χ−1)kl,kl . (17)

In order to remove the zero modes of χ and have a well-defined inverse matrix χ−1, the Ising model entropy SIsing

(7) can be added a regularization term, e.g. (13), which guarantees that χ is positively defined.
The Fisher information matrix, χ, can also be used to estimate the statistical deviations of the observables coming

from the finite sampling. If the data were generated by an Ising model with parameters J, we would expect, again in
the large B setting, that the frequencies pi, pkl would be normally distributed with a covariance matrix equal to 1

B χ.
Hence, the typical uncertainties over the 1- and 2-point frequencies are given by

δpi =

√

1

B
χi,i =

√

〈σi〉J(1 − 〈σi〉J)
B

, δpkl =

√

1

B
χkl,kl =

√

〈σkσl〉J(1− 〈σkσl〉J)
B

. (18)

In practice, we can replace the Gibbs averages above with the empirical averages pi and pkl to obtain estimates for
the expected deviations. These estimates will be used to decide whether the inference procedure is reliable, or leads
to an overfitting of the data in Section VI.

C. Methods

The inverse Ising problem has been studied in statistics, under the name of graphical model selection, in the machine
learning community under the name of (inverse) Boltzmann machine learning, and in the statistical physics literature.
Different methods have been developed, with various applications. Some of the methods are briefly discussed below.
A direct calculation of the partition function Z[J] generally requires a time growing exponentially with the number

N of variables, and is not feasible when N exceeds a few tens. Inference procedures therefore tend to avoid the
computation of Z[J]:

• A popular algorithm is the Boltzmann learning procedure, where the fields and couplings are iteratively updated
until the averages 〈σi〉J’s and 〈σkσl〉J’s, calculated from Monte Carlo simulations, match the imposed values
[12]. The number of updatings can be very large in the absence of a good initial guess for the parameters J.
Furthermore, for each set of parameters, thermalization may require prohibitive computational efforts for large
system sizes N , and problems with more than a few tens of spins can hardly be tackled. Finally, learning data
exactly leads to overfitting in the case of poor sampling.

• the Pseudo-Likelihood-based algorithm by Ravikumar et al. [15, 16] is an extension to the binary variable case
of Meinshausen and Bühlmann’s algorithm [20] and is related to a renormalisation approach introduced by
Swendsen [19]. The procedure requires the complete knowledge of the configurations {στ} (and not only of
the one- and two-point functions p). The starting point is given by well-known Callen’s identities for the Ising
model,

〈σi〉J =

〈

1

1 + exp
(

−∑j Jijσj − hi

)

〉

J

≃ 1

B

B
∑

τ=1

1

1 + exp
(

−∑j Jijσ
τ
j − hi

) (19)

where the last approximation consists in replacing the Gibbs average with the empirical average over the sampled
configurations. Imposing that the Gibbs average 〈σi〉J coincides with pi is equivalent to minimizing the following
pseudo-likelihood over the field hi,

Si,PL[hi, {Jij , j 6= i}] = 1

B

B
∑

τ=1

log

[

1 + exp

(

∑

j

Jijσ
τ
j + hi

)]

− hi pi −
∑

j( 6=i)

Jijpij . (20)

The minimization equations over the couplings Jij , with j 6= i (and fixed i), correspond to Callen identities
for two-point functions. Informally speaking, the pseudo-likelihood approach simplifies the original N -body
problem into N independent 1-body problem, each one in a bath of N − 1 quenched variables. Note that the
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couplings Jij and Jji (found by minimizing Sj,PL) will generally not be equal. However, as far as graphical
model selection is concerned, what matters is whether Jij and Jji are both different from zero.

The pseudo-entropy Si,PL is convex, and can be minimized after addition of a L1–norm regularization term
[13, 15, 21]. The procedure is guaranteed to find strong enough couplings [52] in a polynomial time in N ,
provided that the data were generated by an Ising model (which is usually not the case in practical applications)
and that a quantity closely related to the susceptibility χ (10) is small enough. The latter condition holds for
weak couplings and may break down for strong couplings [16]. For a review of the literature in the statistics
community, see [13].

In specific cases, however, the partition function can be obtained in polynomial time. Two tractable examples are:

• Mean-field models, which are characterized by dense but weak interactions. An example is the Sherrington-
Kirkpatrick model where every pair of spins interact through couplings of the order of N−1/2 [27]. The entropy
S[p] coincides asymptotically with

SMF (p) =
1

2
log detM(p),where Mij(p) =

pij − pipj
√

pi(1− pi)pj(1 − pj)
, (21)

which can be calculated in O(N3) time [11, 30]. Expression (21) has been obtained from the high temperature
expansion [23–25] of the Legendre transform of the free energy , and is consistent with the so-called TAP
equations [26]. The derivative of SMF with respect to p gives the value of the couplings and the fields,

(JMF )kl = −∂SMF

∂pkl
= − (M−1)kl

√

pk(1 − pk)pl(1− pl)
,

(hMF )i = −∂SMF

∂pi
=
∑

j( 6=i)

(JMF )ij

(

cij
pi − 1

2

pi(1− pi)
− pj

)

, (22)

where cij = pij − pipj is the connected correlation. From a practical point of view, expression (21) is a good
approximation for solving the inverse Ising problem [28–30] on dense and weak interaction networks , but fails
to reproduce dilute graphs with strong interactions.

• Ising models on tree-like structures, i.e. with no or few interaction loops. Message passing methods are guar-
anteed to solve the associated inverse Ising problems. For trees, the partition functions can be calculated in a
time linear in N . Sparse networks of strong interactions with long-range loops, such as Erdös-Renyi random
graphs, can also be successfully treated in polynomial time by message-passing procedures [5, 31, 32]. However,
these methods generally break down in the presence of strongly interacting groups (clusters) of spins.

When an exact calculation of the partition function is out-of-reach, accurate estimates can be obtained through
cluster expansions. Expansions have a rich history in statistical mechanics, e.g. the virial expansion in the theory
of liquids [33, 34]. However, cluster expansions suffer from several drawbacks. First, in cluster variational methods
[31, 35], the calculation of the contributions coming from each cluster generally involves the resolution of non trivial
and self-consistent equations for the local fields, which seriously limits the maximal size of clusters considered in the
expansion. Secondly, the composition and the size of the clusters is usually fixed a priori, and does not adapt to the
specificity of the data [10]. The combinatorial growth of the number of clusters with their size entails strong limits
upon the maximal sizes of the network, N , and of the clusters, K. Last of all, cluster expansions generally ignore the
issue of overfitting.
Recently, we have proposed a new cluster expansion, where clusters are built recursively, and are selected or

discarded, according to their contribution to the cross-entropy S [8]. This selection procedure allows us to fully
account for the complex interaction patterns present in experimental systems, while preventing a blow-up of the
computational time. The purpose of this paper is to illustrate this method and discuss its advantages and limitations.

III. CLUSTER EXPANSION OF THE CROSS-ENTROPY

A. Principle of the expansion

In this Section, we propose a cluster expansion for the entropy S(p). A cluster, Γ, is defined here as a non-empty
subset of (1, 2, . . . , N). To illustrate how the expansion is built we start with the simple cases of systems with a few
variables (N = 1, 2), in the absence of the regularization term (13).
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FIG. 2: Decomposition of the cross-entropy S(p) for a system of 4 spins, indicated with different colors, as the sum of cluster
contributions. Each cluster-entropy ∆SΓ(p) depends only on the one- and two-point frequencies of the variables in the cluster:
it can be calculated in a recursive way, see main text. Dotted clusters are decomposed into a diagrammatic expansion in Fig. 3.

Consider first the case of a single variable, N = 1, with average value p1. The entropy S(p1) can be easily computed
according to the definitions given in Section II, with the result

S(1)(p1) = min
h1

SIsing[h1|p1] = min
h1

[

log
(

1 + eh1
)

− h1p1

]

= −p1 log p1 − (1 − p1) log(1− p1) . (23)

We recognize the well-known expression for the entropy of a 0-1 variable with mean value p1. For reasons which
will be obvious in the next paragraph, we will hereafter use the notation ∆S(1)(p1) to denote the same quantity as
S(1)(p1). The subscript (1) refers to the index of the (unique) variable in the system.
Consider next a system with two variables, with mean values p1, p2 and two-point average p12. The entropy

S(1,2)(p1, p2, p12) can be explicitly computed:

S(1,2)(p1, p2, p12) = min
h1,h2,J12

SIsing [h1, h2, J12|p1, p2, p12]

= min
h1,h2,J12

[

log
(

1 + eh1 + eh2 + eh1+h2+J12
)

− h1p1 − h2p2 − J12p12

]

= −(p1 − p12) log (p1 − p12)− (p2 − p12) log(p2 − p12)

− p12 log p12 − (1− p1 − p2 + p12) log (1− p1 − p2 + p12) . (24)

We now define the entropy ∆S(1,2) of the cluster of the two variables 1, 2 as the difference between the entropy
S(1,2)(p1, p2, p12) calculated above and the two single-variable contributions ∆S(1)(p1) and ∆S(1)(p2) coming from the
variables 1 and 2 taken separately:

∆S(1,2)(p1, p2, p12) = S(1,2)(p1, p2, p12)−∆S(1)(p1)−∆S(2)(p2) . (25)

In other words, ∆S(1,2) measures the loss of entropy between the system of two isolated variables, constrained to have
means equal to, respectively, p1 and p2, and the same system when, in addition, the average product of the variables
is constrained to take value p12. Using expressions (23) and (24), we find

∆S(1,2)(p1, p2, p12) = −(p1 − p12) log

(

p1 − p12
p1 − p1p2

)

− (p2 − p12) log

(

p2 − p12
p2 − p1p2

)

− p12 log

(

p12
p1p2

)

− (1− p1 − p2 + p12) log

(

1− p1 − p2 + p12
1− p1 − p2 + p1p2

)

. (26)

The entropy of the cluster (1, 2) is therefore equal to the Kullback-Leibler divergence between the true distribution
of probability over the two spins and the one corresponding to two independent spins with averages p1 and p2. It
vanishes for p12 = p1p2.
Formula (25) can be generalized to define the entropies of clusters with larger sizes N ≥ 3. Again p = {pi, pkl}

denotes the data. For any non-empty subset Γ including 1 ≤ K ≤ N variables, we define two entropies:
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• the subset-entropy SΓ(p), which is the entropy of the subset of the K variables for fixed data. It is defined as
the right hand side of (4), when the variable indices, i, k, l are restricted to Γ. Note that, when the subset Γ
includes all N variables, SΓ(p) coincides with S(p).

• the cluster-entropy ∆SΓ(p), which is the remaining contribution to the subset-entropy SΓ(p), once all other
cluster-entropies of smaller clusters have been substracted. The cluster entropies are then implicitly defined
through the identity

SΓ(p) =
∑

Γ′⊂Γ

∆SΓ′(p) , (27)

where the sums runs over all 2K − 1 non-empty clusters Γ′ of variables in Γ.

Identity (27) states that the entropy of a system (for fixed data) is equal to the sum of the entropies of all its clusters.
Figure 2 sketches the cluster decomposition of the entropy for a system of N = 4 variables.
For Γ = (1), equation (27) simply expresses that S(1)(p1) = ∆S(1)(p1). For Γ = (1, 2), equation (27) coincides with

(25). For Γ = (1, 2, 3), we obtain the definition of the entropy of a cluster made of a triplet of variables:

∆S(1,2,3)(p1, p2, p3, p12, p13, p23) = S(1,2,3)(p1, p2, p3, p12, p13, p23)−∆S(1)(p1)−∆S(2)(p2)−∆S(3)(p3)

− ∆S(1,2)(p1, p2, p12)−∆S(1,3)(p1, p3, p13)−∆S(2,3)(p2, p3, p23) . (28)

The analytical expression of the cluster-entropy ∆S(1,2,3) is given in Appendix B.
The examples above illustrate three general properties of cluster-entropies:

• the entropy of the cluster Γ, ∆SΓ, depends only on the frequencies pi, pij of the variables i, j in the cluster Γ
(and not on all the data in p).

• the entropy of a cluster with, say, K variables, can be recursively calculated from the knowledge of the subset-
entropies SΓ′(p) of all the subsets Γ′ ∈ Γ with K ′ ≤ K variables. According to Möbius inversion formula,

∆SΓ(p) =
∑

Γ′⊂Γ

(−1)K
′−K SΓ′(p) . (29)

• the sum of the entropies of all 2N − 1 clusters of a system of N spins is the exact entropy of the system, see
(27) with Γ = (1, 2, . . . , N).

In practice, to calculate S(p), one first computes the partition function Z[J] by summing over the 2K configurations
σ and, then, minimizes SIsing [J|p] (7) over the interaction parameters J. The minimization of a convex function of
1
2K(K + 1) variables can be done in time growing polynomially with K. Moreover the addition of the regularization
term (13) can be easily handled. The limiting step is therefore the calculation of Z, which can be done exactly for
clusters with less than, say, K = 20 spins.
Hence, only a small number of the 2N − 1 terms in (27) can be calculated. In the present work we claim that, in a

wide set of circumstances, a good approximation to the entropy S(p) can be already obtained from the contributions
of well-chosen clusters of small sizes,

S(p) ≃
∑

Γ∈L

∆SΓ(p) , (30)

We will explain in Section IV how the list of selected clusters, L, is established.

B. The reference entropy S0

So far we have explained how the entropy S(p) can be expanded as a sum of contributions ∆SΓ(p) attached to the
clusters Γ. In this Section we present the expansion against a reference entropy, S0(p), and two possible choices for
the reference entropy.
The idea underlying the introduction of a reference entropy is the following. Assume one can calculate a (rough)

approximation S0(p) to the true entropy S(p). Then, the difference S(p)− S0(p) is smaller than S(p), and it makes
sense to expand the former rather than the latter. We expect, indeed, the cluster-entropies to be smaller when the
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reference entropy S0(p) is substracted from the true entropy. We substitute the original definition (27) with the new
definition

S(p) = S0(p) +
∑

Γ⊂(1,2,...,N)

∆SΓ(p) . (31)

With this new definition, the values of the cluster-entropies ∆SΓ depend on the choice of S0; the previous definition
(27) is found back when S0 = 0. The procedure for the calculation of the cluster-entropies ∆SΓ(p) is the same as
in Section III A, upon replacement of S(p) with S(p) − S0(p). The three properties of the cluster expansion listed
above still hold.
Our final estimate for the entropy will be, compare to (30),

S(p) ≃ S0(p) +
∑

Γ∈L

∆SΓ(p) . (32)

Hence, the cluster expansion is a way to calculate a correction to the approximation S0 to the true entropy S.
Obviously, the introduction of a reference entropy is useful in practice only if S0(p) can be quickly calculated for the
entire system of size N . In other words, the computational effort required to obtain S0 should scale only polynomially
with N . A natural choice for the reference entropy is S0 = SMF (21), the mean-field entropy discussed in Section
II C. As the calculation of SMF requires the one of the determinant of the matrix M(p), it can be performed in a
time scaling as N3 only. In addition, we expect SMF to be a sensible approximation to S for systems with rather
weak interactions. Corrections coming from the strongest interactions will be taken care of by the cluster expansion.
Regularized versions of the Mean Field entropy can be derived as follows. First, we use the MF expression for the

cross-entropy at fixed couplings Jkl and frequencies pi, see (7) and [24], to rewrite

SIsing({pi}, {Jkl}) = −1

2
log det

(

Id− J ′
)

−
∑

k<l

Jkl (pkl − pk pl) , where J ′kl = Jkl
√

pk(1 − pk)pl(1− pl) , (33)

and Id denotes the N -dimensional identity matrix. We consider the L2-norm regularization (13). The entropy at
fixed data p is

S0(p) = min
{Jkl}

[

SIsing({pi}, {Jkl}) + γ
∑

k<l

J2
kl pk(1 − pk)pl(1− pl)

]

= min
{J′

kl}

[

− 1

2
log det

(

Id− J ′
)

− 1

2
Trace

(

J ′ ·M(p)
)

+
γ

2
Trace

(

J ′)2
]

, (34)

where M(p) is defined in (21). The optimal interaction matrix J ′ is the root of the equation

(

Id− J ′
)−1 −M(p) + γ J ′ = 0 . (35)

Hence, J ′ has the same eigenvectors as M(p), a consequence of the dependence on pi we have chosen for the quadratic
regularization term in (13). Let jq denote its qth eigenvalue, and m̂q = (1− jq)

−1. Then,

S0(p, γ) =
1

2

N
∑

q=1

(

log m̂q + 1− m̂q

)

, (36)

where m̂q is the largest root of m̂2
q − m̂q(mq − γ) = γ, and mq is the qth eigenvalue of M(p). Note that m̂q = mq

when γ = 0, as expected.

C. Properties of the cluster entropies ∆SΓ

1. Diagrammatic expansion in powers of the connected correlations

A better understanding of the cluster expansion and of the role of the reference entropy S0 can be gained through the
diagrammatic expansion of the entropy S(p) in powers of the connected correlations (high-temperature expansion),

cij = pij − pipj . (37)
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FIG. 3: Diagrammatic expansion of the cross-entropy S(p). A cluster-entropy (see Fig. 2) is the infinite sum of all the diagrams
in a box (dashed contour), linking the K sites in the cluster. Each link in a diagram carries Mij , and each site pi; in addition,
each diagram carries a multiplicative factor, which is a function of the pi’s. In the Figure only one cluster among all

(

N

K

)

clusters is represented. Only the first diagrams with non–zero coefficients are drawn. Loop diagrams are analytically summed
up and removed from the expansion through the reference entropy S0 = SMF ; Eulerian circuit diagrams (brown/gray) are
partly removed, see main text. Diagrams giving the largest contributions to the universal central peak of the cluster-entropy
distribution (Appendix C) are shown in bold.

Note that the entry Mij of the matrix M defined in (21) vanishes linearly with cij . Thus, an expansion in powers of cij
is equivalent to an expansion in powers ofMij . A procedure to derive in a systematic way the diagrammatic expansion
of S(p) is proposed in [30]. The diagrammatic expansion provides a simple representation of the cluster-entropies, in
which the entropy S(p) can be represented as a sum of connected diagrams (Fig. 3). Each diagram is made of sites,
connected or not by one or more edges. Each point symbolizes a variable, and carries a factor pi. The presence of
n(≥ 0) edges between the sites k and l results in a multiplicative factor (ckl)

n. The contribution of a diagram to the
entropy is the product of the previous factors, times a function of the pi specific to the topology of the diagram, see
[30]. Diagrams of interest include (Fig. 3):

• the N single-point diagrams, whose contributions are ∆S(i)(pi);

• the ’loop’ diagrams, which consist of a circuit with K edges going through K sites i1 → i2 → . . . → iK → i1,
whose contributions to the entropy are

Sloop(p|i1, i2, . . . , iK) = (−1)K−1 Mi1,i2Mi2,i3 . . .MiK−1,iKMiK ,i1 ; (38)

• the Eulerian circuit diagrams, for which there exists a closed path visiting each edge exactly once;

• the non-Eulerian diagrams, with the lowest number of links (smallest power in M).

The entropy for two variables i, j, S(pi, pj, pij) (24), is the sum of the two single-point diagrams i and j, plus the
sum of all connected diagrams made of the two sites i and j with an arbirtrary large number of edges (n ≥ 2) in
between (first two columns in Fig. 3). According to (25), the cluster-entropy ∆S(i,j)(pi, pj , pij) is equal to the latter
sum (second column in Fig. 3). More generally, the entropy of a cluster ∆SΓ(p) is the infinite sum of all diagrams
whose sites are the indices in Γ.
We now interpret the Mean Field expression for the entropy, SMF , in the diagrammatic framework. We start from

identity (21), and rewrite,

SMF (p) =
1

2
Trace logM =

1

2
Trace log

[

Id−
(

Id−M
)]

=
∑

K≥1

−Trace
[(

Id−M
)K]

2K
. (39)
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FIG. 4: Examples of contour paths for three different graphs. Spins are labelled by 1, 2, 3, 4 and first-neighbor interactions are
represented by bold lines. The contour path is depicted with a dotted line. The contour length L, which can be calculated as
the sum of distances along the contour path (dotted arcs have length 2) is indicated above each graph. Different clusters may
have the same contour path and contour length. Left: (1, 3) and (1, 2, 3) have contour length L = 4, while (1, 2) has L = 2.
Middle: clusters (1, 3), (1, 2, 3), (1, 2, 3, 4), (1, 3, 4) have the same contour path. Right: (1, 2, 3, 4) has length L = 6.

Using the fact that the diagonal elements of M are equal to unity, the term corresponding to K = 1 above vanishes.
For K ≥ 2, we have

−Trace
[(

M − Id
)K]

= −
∑

i1,i2,...,iK

(

δi1,i2 −Mi1,i2

)(

δi2,i3 −Mi2,i3

)

. . .
(

δiK−1,iK −MiK−1,iK

)(

δiK ,i1 −MiK ,i1

)

=
∑

i1,i2,...,iK

(−1)K−1 M̂i1,i2M̂i2,i3 . . . M̂iK−1,iKM̂iK ,i1 , (40)

where the matrix M̂ has the same off-diagonal elements as M , and has zero diagonal elements. Each term in the
above sum corresponds to an Eulerian circuit over K ′ ≤ K sites, where K ′ is the number of distinct indices in
(i1, i2, . . . , iK). Note that the same circuit can be obtained from different K-uplets of indices. Consider for instance
the longest circuits, obtained for K ′ = K, i.e. all distinct indices. 2K different K–uplets (i1, i2, . . . , iK) correspond to
the same circuit, as neither the starting site nor the orientation of the loop matter. For instance, i1 → i2 → i3 → i1,
i2 → i3 → i1 → i2, i1 → i3 → i2 → i1, ... are all equivalent. This multiplicity factor 2K precisely cancels the 2K at
the denominator in (39). The contribution corresponding to a circuit therefore coincides with expression (38) for the
loop entropy. We conclude that

• SMF (p) sums up all loop diagrams exactly;

• SMF (p), in addition, sums up Eulerian circuit diagrams, but with weights a priori different from their values in
the cross-entropy S(p) [53]. An exception is the three-variable Eulerian diagram shown in Fig. 3, whose weights
in SMF and S coincide.

• no non-Eulerian diagram is taken into account in SMF (p).

As a conclusion, the diagrammatic expansion provides a natural justification for the choice of the reference entropy
S0(p) = SMF (p). In addition, it provides us with the dominant contribution to the cluster-entropies once the Mean-
Field entropy is substracted, see Fig. 3. A detailed study of those dominant contributions is presented in Appendix C.

2. Dependence on the cluster size and on the interaction path length

To reach a better understanding of what the cluster-entropy means, we consider the case of finite-dimensional Ising
model, e.g. with coupling J > 0 between nearest-neighbors on a D-dimensional lattice. We call ξ the correlation
length: the connected correlation c between two sites at large distance d decays as ∼ exp(−d/ξ). We want to
characterize the behavior of the cluster-entropy ∆SΓ when the K sites in the cluster Γ are far apart on the lattice. We
first choose no reference entropy (S0 = 0). According to the above diagrammatic expansion, the lowest order diagram
(in powers of c) with K sites has the loop topology. We look for the shortest closed path joining all the sites in Γ;
let L(Γ) be this contour length, that is, the sum of the distances between neighboring sites along the path (Fig. 4).
Then, according to (38), the largest contribution (in absolute value) to the cluster entropy is

∆SΓ ≃ A(p,K) (−1)K−1 exp
(

− L(Γ)/ξ
)

, (41)

where A is a positive function K and of p, the representative value of the frequencies pi of the variables in Γ. We
conclude that the sign of the cluster-entropy depends on the parity of the number of sites. Furthermore, ∆SΓ decreases
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exponentially fast (in absolute value) with the length of the shortest path joining the sites in the cluster. As soon as
one site is very far away from the remaining K − 1 ones, the cluster-entropy is small.
As a consequence, the sum (27) is alternate, and we expect cancellation between contributions coming from clusters

sharing the same shortest path, but with different sizes. This crucial point is perfectly illustrated by the one-
dimensional Ising model. The correlation between two sites at distance dij = j − i is, in one dimension, cij =
√

pi(1 − pi)pj(1− pj) exp(−dij/ξ) (Appendix F). The matrix M defined in (21) has elements

Mij = e−dij/ξ (42)

Then, according to (38), the largest contribution (in absolute value) to the cluster entropy of a cluster containing the
K spins i1 < i2 < . . . < iK is given by (41) with

L
(

Γ = (i1, i2, . . . , ik)
)

= 2(ik − i1) , (43)

and A(p,K) = 1
2 . An exact calculation, reported in Appendix F, shows that

∆S(i1,i2,...,iK) = (−1)K F

(

exp
(

− ik − i1
ξ

)

)

, (44)

where F is a smooth function given in (F11), such that F (0) = F ′(0) = 0, F ′′(0) = −1. This identity is in agreement
with (41), since the shortest path encircling all sites has length L(Γ) = 2(iK− i1). Hence, all clusters sharing the same
’extremities, i.e. the same values of i1 and iK , have the same entropies in absolute value. The sign is determined
by the parity of K as mentioned above. Let iK − i1 ≡ d. Γ = (i1, iK) is the unique cluster of size K = 2 having its
’extremities’ equal to i1 and iK ; its entropy is ∆S∗(i1,iK) = F (exp(−d/ξ)). There is (d− 1) clusters of size K = 3 with

the same extremities, each having an entropy equal to −∆S∗(i1,iK). More generally, there are
(

d−1
K−2

)

clusters of size K

with the same extremities, each having an entropy equal to (−1)K−2∆S∗(i1,iK). The total contribution to the entropy

of all those clusters (at fixed extremities i1, ik) is

∆Sfixed i1,ik
=

d+1
∑

K=2

(−1)K−2
(

d− 1

K − 2

)

∆S∗(i1,iK) = (1− 1)d−1 ∆S∗(i1,iK) =

{

∆S∗(i1,iK) if d = 1 ,

0 if d ≥ 2 .
(45)

The above calculation nicely exemplifies the cancellation of cluster-entropies. The contributions of all clusters sharing
the same extremities exactly compensate each other, unless those extremities are nearest-neighbors on the lattice. We
show in Appendix F that this exact cancellation is a consequence of the existence of a unique interaction path along
the unidimensional chain. As a result, in dimension D = 1, the cross-entropy S is simply the sum of the entropies of
the clusters made of nearest neighbours.
In the presence of a reference entropy, S0 = SMF , the asymptotic scaling of the cluster-entropy with its contour

length L changes, as the dominant contribution coming from loop diagrams is removed from the cluster expansion
and absorbed into S0. The subleading contribution to the cluster-entropies is depicted in bold in Fig. 3 and derived
in Appendix C. In dimension D = 1, formula (41) is replaced with

∆S(i1,i2,...,iK) = A′(p,K) (−1)K−1 exp
(

− 3(ik − i1)/ξ
)

. (46)

Note the sharper asymptotics decay with the distance between the extremities of Γ than in the absence of reference
entropy. As expected, the terms in the expansion of S − S0 are smaller than the one in the expansion of S alone.
Remarkably, the exact cancellation property studied above also holds when the reference entropy is non-zero, as
proven in Appendix F.
In dimension D = 2 or higher, more than one interaction path connect any two spins, and cluster-entropies with the

same contour path do not cancel exactly as in the D = 1 case. However, partial cancellations are present. Figure 5
shows the values of the cluster-entropies versus the length of the shortest path, L(Γ), for a small bidimensional 3×3
grid. For such a small system all data p and cluster-entropies ∆SΓ (with up to K = 9 spins) can be calculated by
exact enumeration methods. We observe that:

• |∆SΓ| is sensitive to the value of LΓ more than to the size K of the cluster;

• |∆SΓ| rapidly decreases with LΓ;

• the values of the cluster-entropies reflect the structural properties of the lattice, e.g. clusters made of central
sites, such as 4-5, have a larger entropy than the clusters including pairs of edge spins, such as 1-2;
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FIG. 5: Cluster entropy contribution ∆SΓ for a 3 × 3 grid (top-right) with nearest-neighbour couplings J = 1.777 (in units
of kBT ) as a function of the contour length LΓ of the shortest closed path on the lattice joining the spins in Γ. To illustrate
cancellation effects, some ∆SΓ are labelled with the indices in Γ, see main text. The values of J and of the fields hi =
− 1

2

∑

j( 6=i) Jij [49] are chosen to make the system critical in the infinite grid size limit, see Section VIC.

• the sign of ∆SΓ changes with the parity of the size of the cluster.

As a result, the contributions to the entropies coming from the clusters sharing the same path, of length L, partially
cancel each other. Consider for example the path 1-2-4-5 of length L = 4; all 7 clusters that share this path have
similar |∆S|, ranging between 0.0024 and 0.0046, and so does their sum, ∆S(2,4) +∆S(1,5) +∆S(2,4,5) +∆S(1,4,5) +
∆S(1,2,5) +∆S(1,2,4) +∆S(1,2,4,5) = −0.00242 [54]. The sum of the entropies of the clusters sharing the same path is
generally of the same order of magnitude as, or even smaller than the single contributions. Figure 6 shows that the
sum of the 12 clusters of contour length L = 2 and of the 4 square–path contributions (|∆S| ≥ .0024) approximates
the entropy within 10−6.

IV. TRUNCATION OF THE CLUSTER EXPANSION

In this Section we present a truncation scheme for the cluster expansion, which consists in discarding all clusters
with entropies smaller than a threshold Θ. We explain why this scheme is efficient, in particular in the presence of
sampling noise, and robust against strong correlations in the data (large correlation length). The behavior of the
expansion as a function of the threshold is discussed.

A. Schemes for truncating the expansion in the noiseless case

Expansion (27) for S(p) includes 2N − 1 terms, and is useless unless an accurate truncation scheme is available. A
naive truncation consists in keeping the contributions from the clusters with ≤ K spins, where K is an arbitrary size.
This procedure was applied to neurobiological data (with N ≤ 40, K = 7) in [10], which are characterized by large
negative fields. However it suffers from two drawbacks. First, the combinatorial growth of the number of clusters
with N and K impedes its application to very large systems. Secondly, the truncation does not converge properly
with increasing K if the correlation length of the system is large.
As an illustration, consider again the 1D-ferromagnetic Ising model, with correlation length ξ. The sign of ∆SΓ

alternates with the parity of the size K of Γ; its modulus decays asymptotically as exp(−Ωd/ξ), where d is the
maximal distance between any two spins in Γ (Section III C 2), and Ω = 2 if there is no reference entropy (S0 = 0),
Ω = 3 if S0 = SMF . Let ∆S(K) be the sum of ∆SΓ over all the clusters Γ with K spins. In the thermodynamic limit
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(N → ∞),

1

N
∆S(K) ∼ (−1)K−1

∑

d≥K−1

(

d− 1

K − 2

)

exp
(

− Ω d/ξ
)

=
(−1)K−1

(

exp(Ω/ξ)− 1
)K−1

. (47)

Consider then the series summing all 1
N∆S(K) with K ≥ 2. The series is convergent if ξ < ξc =

Ω
log 2 , and divergent

when ξ > ξc. In the latter case, for a finite–N system, the maximum of |∆S(K)| is exponentially large in N , and
is reached in K ≃ N

2 . As a consequence, for ξ > ξc, the sum (27) can not be truncated according to the size of the
clusters. This result is not specific to the dimension unity, and holds for other interaction networks. The expansion
of S(p) defines an alternate series, and the order of its terms matters for its convergence in the N → ∞ limit. For
an Ising model on a generic lattice with fixed degree (number of neighbours) v, the largest value of ξ such that the
series (27) (after division by N) is absolutely convergent in the N → ∞ limit is ξc =

Ω
log v (Appendix D).

A better truncation scheme consists in keeping cluster-entropies larger than a threshold Θ only. Let us define

S(p,Θ) =
∑

Γ⊂(1,2,...,N)
|∆SΓ(p)|>Θ

∆SΓ(p) . (48)

The rationale is that, due to the properties of the cluster entropies and to the cancellation mechanism exposed in
Section III C 2, summing large cluster-entropies may provide a good approximation to the true value of S(p). In the
D = 1 Ising model case, the exact value of S(p) is, indeed, obtained as soon as Θ < ∆S(1,2). We show in Fig. 6 the
residual error in the cross-entropy due to the truncation as a function of the threshold Θ for the same small D = 2
grid as in Fig. 5. The error S(p,Θ) − S(p) is very small, and equal to 10−6 when all clusters with contour length
smaller than 4 are taken into account. As Θ is made smaller, clusters with larger contour lengths are summed up,
and the error reaches the numerical accuracy ∼ 10−14. On top of this trend, positive fluctuations, corresponding to
larger errors, arise when not all the clusters with the same interaction path (and length L) are summed up, and the
cancellation of those contributions is not effective (Fig. 6 and caption). We will study in more details this phenomenon
in Section IVD.
We now explain why the presence of noise in the data provides a compelling argument supporting the introduction

of the cut-off Θ.

B. Distribution of small cluster-entropies in the presence of noisy data

In this Section, we investigate how limited sampling affects the values of the cluster-entropies. We assume that B
configurations στ are sampled from the Gibbs distribution of an Ising model with interaction parameters J using a
Monte Carlo procedure to generate the data p.

1. Universality at small |∆S|: numerical evidence

The empirical correlations, cij = pij − pipj , differ from the Gibbs correlations, 〈σiσj〉J − 〈σi〉J〈σj〉J, by random
fluctuations of amplitude

cB ≃ p(1− p)√
B

, (49)

where p is the typical value of the pi. For pairs i, j with weak Gibbs correlations (< cB in absolute value), the
experimental correlations are dominated by the noise. As a consequence, the distribution of the cluster-entropies is
universal for small ∆S. Its structure is a consequence of the noise in the data, and not of the interaction network of
the model used to generate the data.
Figure 7 shows the histograms H (full distributions) of the entropies ∆S(i,j,k) for the K = 3–clusters for a one-

dimensional Ising model, for three values of the numbers B of sampled configurations. The histograms are made of
two components: a bell-shaped distribution at small |∆S|, and isolated peaks at larger |∆S|. The cluster-entropies
corresponding to the isolated peaks have the same values as in the perfect sampling case (B = ∞, impulses). When
B increases, the bell shapes move towards smaller entropies (in the log-scale of Fig. 7), and more peaks are unveiled
in H .
We show also in Fig. 7 the histograms HIS for a system of Independent Spins (IS), with the same pi’s as the

original system, and the same number B of sampled configurations. Contrary to H , HIS does not exhibit isolated
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FIG. 6: Effect of truncation on the bidimensional 3×3 grid with J = 1.777 (units of kBT ) and fields hi = −∑

j( 6=i) Jij [49],

for these parameters values the model has a phase transition between the paramagnetic and ferromagnetic phase and therefore
the correlation length is proportional to the linear size of the system. Top: difference between the truncated and the true
cross-entropies as a function of the cut-off on the absolute cluster-entropies, Θ. Bottom: contour lengths L(Γ) vs. Θ. The
fluctuations of S(Θ)− S reflect the cancellation phenomenon. Summation of the 12 clusters of nearest-neighbours with K = 2
and L = 2 gives S(Θ = 0.1) − S ≃ 0.01, of the 21 clusters contributions corresponding to squared paths, e.g. 1-2-4-5), with
K = 2, 3, 4 and L = 4 gives S(Θ = 0.002) − S ≃ 10−6. Fluctuations arise if only a part of the clusters that share the same
interaction path are summed up, and cancellation is incomplete. For instance, fixing Θ = 0.0025 discards (1, 2, 4, 5), which has
the same interaction path as (2, 4).

peaks at well-defined, B–independent cluster-entropies. The histograms HIS concentrate around smaller |∆S| as the
number B of configurations increases. Note that the histograms HIS roughly correspond to the bell-shape parts of
the distributions H for the same value of B. We have checked that these features are largely independent of the
particular sample and of the cluster size, K.
The histograms HIS depend on B through their standard deviation, σIS(B). The calculation of σIS(B) from the

dominant contribution (C7) in the diagrammatic expansion of the cluster entropies (Section III C 1) is presented in
Appendix E. We obtain that, for clusters of size K and in the case of uniform averages pi = p different from 0, 1

2 ,
and 1 [55],

σIS(B) ≃
√

3KK!

8

(2p− 1)2

p(1− p)

( 1

B

)K− 1
2

. (50)

Figure 8 shows how the small-entropy regions of the histograms H obtained for different B collapse onto each other
once rescaled by σIS(B). As expected, the rescaled H coincide with HIS in the small |∆S| ≤ σIS(B) region, which
concentrates most of the distribution (Fig. 8). The universality of the distribution at small ∆S is not specific to
the one-dimensional Ising model, but holds, in the thermodynamic limit, for all interacting spin systems when the
measured connected correlations are corrupted by noise. For a finite system in dimension D with correlation length
ξ, we expect that the small-∆S is universal when N > ℓD, where ℓ = ξ log(1/cB). Indeed, the number of large cij
coming out of the noisy background is ≈ N ℓD, while, for most of the

(

N
2

)

pairs of spins i, j, the connected correlations
have random values of amplitude cB.
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FIG. 7: Histograms of ∆S(i,j,k) for the 1D-Ising (full distributions, p = .02, ξ = 1) and Independent Spin (dotted distribution)
models, with N = 50 spins. Each histogram correspond to one random sample of B configurations. Impulses show the histogram
for perfect sampling (B =∞), with Dirac peaks located at log |∆SΓ| = − 3dΓ

ξ
+Cst. The cut-off at small entropies comes from

the finite value of N .

The full distribution HIS can be characterized analytically in the N → ∞ limit. Details can be found in Appendix
E. We find the following scalings, depending on the value of the cluster size, K:

HIS(∆S) ∼ 1

|∆S|2/3 for K = 2 ,
(− log∆S)K−2

√

|∆S|
for K ≥ 3 (|∆S| → 0) ,

∼ exp
(

−C2(B) |∆S|2/(2K−1)(1 + o(1))
)

for every K ≥ 2 (large |∆S|) , (51)

where C2(B) = 2×3(K−1)/(2K−1) K(2K−3)/(2K−1)/(2K−1)2 (σ∆S)
−2/(2K−1) is proportional to B, see Appendix E and

equation (E21). The distribution is therefore characterized by a divergence at the origin, and stretched exponential
tails. The scalings above were derived with the choice S0 = SMF ; in the absence of the reference entropy, the stretched
exponential has exponent 2

K instead of 2
2K−1 .

2. Finite–N effects and lower bound to the threshold Θ

The discussion about the localized peaks and the bell-shape distribution in HIS in the previous Section is an
oversimplification. In reality, for finite systems, large fluctuations of the sampled correlations take place, and no clear-
cut boundary exist between cluster-entropies due to the noise and the ones deriving from the interaction network.
From extreme value theory [38], the largest value of the correlations are of the order of cMAX

ij = cB
√
4 logN . Therefore,

the largest cluster-entropy is, according to (C7), of the order of

∆Smax ≈ (4 logN)(2K−1)/2σIS . (52)

A more detailed calculation to estimate where this fuzzy boundary between the signal and the noise in the entropy
distribution takes place is presented below. Let MK(Θ) be the average number of clusters of size K with entropies
|∆S| > Θ. According to (51),

M(Θ) =

(

N

K

) ∫

Θ

d(∆S)HIS(∆S) ≃ exp
(

−C2(B) Θ2/(2K−1)
) (2K − 1)NK Θ(2K−3)/(2K−1)

2K!C2(B)
, (53)

for large Θ and N (compared to K). The value of the threshold Θ such that M(Θ) = Nα, with α < K, is, to the
leading order in N ,

Θ(α) ≃
(

K − α

C2(B)
logN

)K− 1
2

. (54)
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FIG. 8: Same as Fig. 7, after rescaling by the standard deviation σIS(B)(50) of the Independent Spin model. Note the
linear scale of the x-axis. As a result of the presence of the interaction network, the Ising histograms H are asymmetric in
∆S → −∆S for large values of ∆S, while the IS distributions HIS are obviously symmetric when averaged over the realizations
of B configurations (not shown).
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FIG. 9: (a) Number M of clusters (i, j, k) with |∆S(i,j,k| > Θ as a function of the threshold Θ, for one realization of B = 106

configurations (N = 40 independent spins with p = .0248). The theoretical values for the threshold, Θ(2) = 5 10−14,Θ(1) =
1.3 10−12,Θ(0) = 5.5 10−12, corresponding to, respectively, M = N2, N, 1, are shown. (b) Number of clusters as a function of
their entropy ∆S. Same data as in (a), on a smaller entropy scale.

In particular, using the formula above for α = 0, it is likely that no cluster have entropy larger than Θ(0), in agreement
with (52).
We have tested formula (54) through a computation based of a system of N = 40 Independent Spins, with uniform

mean p = .0248; these parameters were chosen to mimick real data described in [2]. Figure 9(a) shows the number
of clusters with entropies larger than Θ in absolute value, for a random set of B = 106 configurations (K = 3). The
theoretical predictions based on (54) are in very good agreement with the simulations. The vast majority of clusters
have entropies smaller than, say, Θ(2). On a smaller entropy scale, the histogram HIS of the small cluster entropies
is strongly concentratred around zero as predicted in 51 (Fig. 9(b)).
As a conclusion, due to the sampling noise, most small cluster-entropies are random quantities, and provide no

information about the underlying interactions parameters. Imposing a threshold Θ allows one to remove these artifact
contributions. A lower bound to the value of Θ is given by (54), with, say α = 1 or 2. In practice, we will see that
higher values of Θ may be sufficient for an accurate solution of the inverse Ising problem.
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C. Properties of the susceptibility matrix and of its inverse

We now present a theoretical argument suggesting that the truncation scheme we have introduced is robust against
an increase of the correlation length of the system. More precisely, the maximal size of the clusters to be summed
up to reach an accurate solution of the inverse problem is not directly related to the correlation length, but rather
depends on the structure of the interaction graph.
The susceptibility matrix χ (10) characterizes how the observables of the Ising model, such as the averages and

correlations in p, are modified in response to an infinitesimal change in one or more interaction parameters in J. As
far as the inverse Ising problem is concerned, it is more natural to ask the following question. Assume the inverse
problem has been solved for a set of data p and the corresponding interations J have been found. Now imagine that
the data are slightly changed, p → p + δp. How large will be the resulting change δJ in the interactions? The
response function characterizing the inverse problem,

δJ

δp
= −∂2S(p)

∂p∂p
= χ−1 , (55)

is simply the inverse of the susceptibility matrix χ. Whether the inverse problem is well-behaved or not will therefore
depend on the properties of χ−1. In particular, it will depend on the largest eigenvalues of χ−1 and on the structure
of the corresponding eigenvectors.
A quantity which is closely related to (55) in liquid theory is the Ornstein-Zernike direct correlation function. The

direct correlation is widely believed to be short–ranged, as the interaction potential [46]. This property is used in
closure schemes such as the Percus-Yevick scheme to obtain the equation of state [42]. We discuss below in details
the property of the inverse susceptibility matrix in the case of the spherical model and of the unidimensional Ising
model.

1. Case of perfect sampling: properties of χ and χ
−1

Consider first the O(m) model, where each site i = 1, 2, . . . , N carries a m-dimensional real-valued spin vector
σi = (σ1

i , σ
2
i , . . . , σ

m
i ), of norm

√
m. As usual, two spins, say, i and j, are coupled through the dot product of their

spin vectors, −Jij σi · σi (units of kBT ). Hence the interaction Jij couples the same component (α) of the spins in
the pair i, j. The fields hα

i , with α = 1, 2, . . . ,m, are chosen to vanish for simplicity. In the large–m limit the model
can be exactly solved [40]. The cross-entropy is equal to

S(p) =
m

2
log det p̂+O

(

logm
)

, (56)

where p̂ is the N × N matrix with diagonal elements p̂ii = 1 and off-diagonal elements p̂ij , equal to the average of
the product of the components α of spins i and j. The elements of the inverse susceptibility matrix are obtained by
differentiating S(p) twice with respect to p̂,

(

χ−1
)

kl,k′l′
=

1

2

(

Jk,k′Jl,l′ + Jk,l′Jl,k′

)

. (57)

Hence, the inverse susceptibility has the same structure as the interaction graph. In particular, if the coupling matrix
J is sparse (has many zero elements), so is χ−1. On the contrary, the susceptibility matrix χ is generally not sparse.
The observation above is not specific to spherical spins. Consider now the D–dimensional Ising model with σi = 0, 1

spins on a hypercubic lattice, with nearest neighbour interactions Jij . In the D = 1 case the susceptibility matrix

(top right corner in matrix (10)) is non zero for all i, i′: χi,i ∝ x|i−i
′|, where the proportionality constant does not

depend on i, i′, and x = exp(−1/ξ). The inverse susceptibility matrix is a tridiagonal matrix [43]: the only non-zero
elements are

(χ−1)ii =
1 + x2

1− x2
and (χ−1)i,i±1 = − x

1− x2
. (58)

As in the spherical model, the structure of the inverse susceptibility matrix is the same as the one of the interaction
matrix. In dimension D ≥ 2 the inverse susceptibility matrix is not, strictly speaking, sparse. However it exhibits
a much faster decay with the distance r = |i − i′| than the susceptibility itself [56]. At the critical point, the latter
decays as χ(r) ∼ r−(D−2+η), where the critical exponent attached to the decay of the spin-spin correlation, η, vanishes
in dimension D ≥ 4, and is positive and small in dimension D ≤ 3, i.e. η = 1

4 for D = 2. The inverse susceptibility is
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the Laplacian in dimension D ≥ 4, a purely local operator, and decays as χ−1(r) ∼ r−(D+2−η) for D ≤ 3. While both
quantities decrease as power laws in r, the inverse susceptibility has a much sharper decay than the susceptibility
itself. In particular, the integrated contribution to the susceptibility coming from distances larger than R,

∫ ∞

R

dDr χ(r) = R1−η , (59)

diverges when R → ∞, while the same quantity calculated for the inverse susceptibility,
∫ ∞

R

dDr χ−1(r) =
1

R3−η
, (60)

tends to zero as R → ∞. This fact is a good news for the inverse problem. According to (55) the error on the field
hi done when discarding all the spins at distance R > ǫ−1/(3−η) is of the order of ǫ only. In this regard, the inverse
Ising problem remains local even at the critical point.
While the discussion above is related to the response of a field hi to a change in the average pi′ of spin i′, the response

of a coupling Jkl following a modification of the 2-point average pk′l′ , see (10), is also of interest. Unfortunately, to
our best knowledge, this quantity has not been studied in the case of the Ising model so far. As a first step, we
focus here on the D = 1-Ising model with uniform nearest-neighbour interactions, and in the thermodynamical limit
(N → ∞). The four-spin connected correlation function is, up to a p-dependent multiplicative constant, equal to

χij,kl = xi4−i3+i2−i1 − xj−i+k−l , (61)

where i1 ≤ i2 ≤ i3 ≤ i4 are the same indices as i, j, k, l but sorted in increasing order, and x = exp(−1/ξ) < 1. We
show in Appendix G that the inverse susceptibility matrix is given by

(

χ−1
)

ij,kl
=































(1+x2)2

(1−x2)2 if i = k, j = l and j ≥ i+ 2 ,
1+x2+x4

(1−x2)2 if i = k, j = l and j = i+ 1 ,

−x(1+x2)
(1−x2)2 if i = k ± 1, j = l or i = k, j = l ± 1 ,
x2

(1−x2)2 if i = k ± 1, j = l ± 1 ,

0 otherwise .

(62)

Hence, the inverse susceptibility matrix is sparse, with at most 9 non-zero elements per line, while the dimension of
the matrix is 1

2N(N − 1) → ∞. In dimension D ≥ 2, we do not expect χ−1 to be sparse. However we conjecture

that
(

χ−1
)

ij,kl
decays quickly with the minimal distance between the four points i, j, k, l (each index, e.g. j, is now a

D-dimensional vector).

2. Influence of the sampling noise on the norms of χ and χ
−1

To corroborate this statement we have carried out exact numerical analysis of small bidimensional grids (Section
III C 2). We show in Fig. 10(a) the fraction of elements χij,kl of the susceptibility matrix larger than ǫ = 10−7 in
absolute value (the largest elements have magnitude ∼ 1). This fraction is closed to 1 for all the values J of the
coupling we have studied. As expected, the inverse susceptibility matrix has many more small elements (Fig. 10(b)).
In addition, the fraction of entries in χ−1 smaller than ǫ seem to increase with the size N of the grid.
In the presence of noise in the sampling process the inverse matrix χ−1 loses its quasi-sparse structure. More

precisely, for the number B of sampled configurations chosen in Fig. 10(b), all the elements (χ−1)ij,kl are larger than
ǫ in absolute value. Indeed, the quasi-sparsity χ−1 in the perfect sampling case reflects the sparse structure of the
underlying interaction matrix. When data are corrupted by noise, the Ising model (over)fitting the data has no reason
to be sparse anymore, and neither has the inverse susceptibility.
The influence of the sampling noise on the susceptibility matrix and on its inverse can be measured through the

largest and smallest eigenvalue of χ, denoted by, respectively, λmax and λmin. According to Figs. 11(a,b), we have
that:

• λmax increases with the size of the system (we expect λmax to diverge at the critical coupling J ≃ 1.778 in the
thermodynamical limit), but is not affected by the sampling noise (the black and red/gray curves associated to
the same size are nearly indistinguishable in Fig. 11(a)).

• λmin is not strongly affected by the system size in the case of perfect sampling. In case of noisy sampling, λmin

acquires a smaller value. The effect of the noise increases with the system size (Fig. 11(b)).
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FIG. 10: Fraction of elements larger than 10−7 (in absolute value) for the susceptibility χ (a) and the inverse susceptibility
χ

−1 (b) matrices vs. strength J of the nearest-neighbour coupling. The sizes N of the grids are indicated. Data were obtained
from exact numerations for sizes 3 × 3, 4 × 4, 5 × 5 (perfect sampling, black) and from Monte Carlo simulations for all sizes
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Those facts are observed from the study of the norms of the two matrices χ and χ−1. Here, we define the norm of
the matrix A through

||A|| = max
i

∑

j

|Ai,j | . (63)

Figures 11(c,d) show that the behaviours of the norms ||χ|| and ||χ−1|| are, from a qualitative point of view, similar to
the ones of, respectively, λmax and 1/λmin. However the norms are directly related to the magnitudes of the elements
of the matrices, according to (63). The independence of ||χ−1|| from the size N , contrary to the strong increase of
||χ||, supports the notion that most elements of χ−1 are very small (or even zero) in the case of perfect sampling.
This property is lost when the sampling is not perfect: the presence of noise in the correlation makes the norm ||χ−1||
increases with N (Fig. 11(d)).



22

0.03 0.06 0.12

Θ
12

12.25

12.5

12.75

13

Σ

(a)

0.029 0.030 0.031 0.032 0.033

Θ

12.25

12.5

12.75

Σ

(b)

FIG. 12: (a) Sum Σ of the cluster-entropies larger than Θ (in absolute value) for the nearest neighbour one-dimensional
Ising model with ξ ≃ 8.97 ≫ ξc ≃ 4.33, and B = 105 configurations. The initial increase from zero, taking place at small
Θ ≃ ∆S(1) ≃ 0.41, is not shown. (b) magnification of (a) in the range .029 < Θ < .033. Within the random sign model, the
behavior of Σ within a packet is similar to a Brownian bridge, see main text.

D. Dependence of the truncated entropy on the threshold

Hereafter, we study how the error on the entropy S(Θ) resulting from the truncation varies with the threshold
Θ and we discuss the fluctuations of S(Θ) − S observed in Fig. 6. We start by sorting the absolute values of the
cluster-entropies |∆SΓ| in decreasing order:

∆S1 ≥ ∆S2 ≥ ∆S3 ≥ . . . ≥ ∆Sn ≥ . . . ≥ 0 . (64)

We call ηn = ±1 the sign of the cluster-entropy ∆SΓ attached (equal in absolute value) to ∆Sn. Given the threshold
Θ, we define n∗(Θ) as the index of the smallest cluster-entropy larger than Θ: ∆Sn∗(Θ) ≥ Θ > ∆Sn∗(Θ)+1. The
truncated entropy (48) can be rewritten as S(p,Θ) = Σ(Θ), where

Σ(Θ) =

n∗(Θ)
∑

n=1

ηn ∆Sn . (65)

We want to study how Σ(Θ) behaves when Θ is made small. In particular, how does the difference ǫs(Θ) = Σ(Θ)−Σ(0)
behave as a function of Θ? Is it a smooth function, or does it exhibit large and irregular fluctuations? From a
mathematical point of view, it is convenient to imagine that N → ∞. The above question can be formalized as
whether 1

NΣ(Θ) converges to some limit value; the normalization factor comes from the fact that we expect the
cross-entropy to be extensive in the system size N . Depending on the system under consideration, different situations
can be encountered.
The most favorable case is when

lim
N→∞

1

N

∑

n≥1

∆Sn < ∞ . (66)

If this condition holds, the difference ǫs(Θ) can be made arbitrarily small if Θ is small enough. An illustration is
provided by the one-dimensional Ising model with small correlation length ξ and perfect sampling (B = ∞). For this
model, the sequence of ∆Sn is highly degenerate, and its distinct values are in one-to-one correspondence with the
integer distances d ≥ 1 between the extremities of the clusters (Fig. 7). The cluster-entropy ∆S(d) asymptotically
decays as exp(−3d/ξ), and has multiplity 2d−1, since each point between the extremities may or may not belong to
the cluster. We find

1

N

∑

n≥1

∆Sn ≃
∑

d≥1

2d−1 exp(−3d/ξ) , (67)

which converges if ξ < ξc = 3
log 2 . The calculation above is very similar to the one of Section IVA. Indeed, when

the series with general term ∆S(K) is absolutely convergent, any ordering of the cluster-entropies is possible. In
particular, one is allowed to sum all the clusters of a given size K as proposed at the beginning of Section IVA.
What happens when condition (66) is violated? Again consider the one-dimensional Ising model. For perfect

sampling, the cancellation property discussed in Section III C 2 ensures that 1
NΣ(Θ) has reached its limit ∆S(d = 1)
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FIG. 13: Frequences of the block length ℓ for the 1D-Ising model, with N = 30 spins, ξ = 8.96, and one set of B = 105 sampled
configurations. The statistics takes into account the cluster-entropies used to draw Fig. 12(a) only.

as soon as Θ < ∆S(1). In the case of noisy sampling (finite B), the situation is more complex. In the presence of
noise in the correlations ckl the cluster-entropies with the same distance d between extremities are not degenerate
any longer. We show in Fig. 12(a) the value of Σ as function of Θ for a large correlation length ξ compared to ξc,
and B = 105 sampled configurations. We observe the appearance of ’packets’ of cluster-entropies, located around the
noiseless values ∆S(d ≥ 2). The width of a packet depends on the amount of noise due to the sampling, i.e. on the
number B of sampled configurations. The values of Σ at the two edges of the packet are very close to one another
due to the cancellation property. As Θ spans the range of cluster-entropies in the packet, Σ fluctuates. The maximal
amplitude of the fluctuations seems to weakly increase as we look at packets with smaller and smaller entropies
(Fig. 12(a)).
We have analyzed the statistics of the signs ǫn of the cluters -entropies in (65). Writing the sequence of signs

η = (η1, η2, η3, . . .), we consider the blocks j of contiguous and equal signs, and defines their lengths ℓj . For instance,
the block lengths corresponding to η = (+,+,−,+,+,+,+,−,−,−,−,−,+,−, ....) are ℓ1 = 2, ℓ2 = 1, ℓ3 = 4, ℓ4 =
5, ℓ5 = 1, .... The histogram of the block-lengths is shown in Fig. 13. The two main features are:

• The frequence of ℓ decreases exponentially when ℓ ≪ N , and is in very good agreement with the exponential

law
(

1
2

)ℓ
.

• A large ’structural’ block of length ℓ ≃ N is present. This block corresponds to the N clusters of size K = 2
(having all sign +), and the cluster of size K = 3 with largest entropy (which has the same sign +).

We have calculated the correlation between successive block lengths, normalized by the variance of the block length,

ρ =
lj lj+1 − lj

2

l2j − lj
2 , (68)

where (·) denotes the average over the blocks j. For the model and the data shown in Figs. 12 and 13, we find
ρ ≃ .012. Changing the set of sampled configurations does not affect the amplitude of the ratio ρ, which is always
found to be about 1%. This ratio coincides with the inverse of the square root of the number of blocks, equal to a few
thousands. Hence, the analysis is compatible with the absence of any correlation between the lengths of successive
blocks. The same conclusion is reached with experimental data, e.g. multi-electrode recordings of the activity of a
neural population [2, 37] (not shown).
The simple statistics sets above suggests the following ’random sign’ model, allowing us to deepen our theoretical

understanding of the behavior of Σ(Θ). In the random sign model, the signs ηn are replaced with random variables,
equal to ± with probabilities 1

2 , and independent from each other. We emphasize that, in Σ(Θ) defined in (65), the
signs are deterministic (for given data p). The random sign model is therefore an approximation motivated by the
statistical analysis above. Assume now that the value chosen for the threshold Θ falls within a packet p including Np

clusters. Fluctuations of the order of

∆Σ ∼ ±Θ
√

Np (69)
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are expected on the entropy. As Θ decreases, the size of the packets, Np, tends to be bigger. Loosely speaking, smaller
entropies correspond to longer interaction paths, shared by many more clusters. In the case of the one-dimensional
Ising model, as Θ decreases, the distance between the extremities of the clusters involved in a packet, d, increases. We

have Np = 2d−1; hence, ∆Σ ∼ exp(−3d/ξ)
√
2d. We conclude that the error on the entropy tends to zero if ξ < 2 ξc.

From the above discussion, it appears that a general, sufficient condition for the amplitude of the fluctuations to
vanish as Θ → 0 is

lim
N→∞

1

N

∑

n

(∆Sn)
2 < ∞ . (70)

Indeed, if condition (70) is fulfilled, the sum of the fluctuations due to all packets corresponding to cluster-entropies
smaller than Θ is guaranteed to vanish with Θ. Hence condition (70) not only ensures that the fluctuations ∆Σ
attached to the packet ’cut’ by Θ vanishes, but also that the error on the entropy, ǫs(Θ), tends to zero when Θ → 0.
It is important to realize that the guarantee is of probabilistic nature. Arbitrary large fluctuations are possible (in the
N → ∞ limit), but are very unlikely. More precisely, within the random sign model, the error is a normal variable,

ǫs(Θ) = N
(

0,
1

N

∑

n>n∗(Θ)

(∆Sn)
2

)

, (71)

with a variance vanishing with Θ according to (70). The true error is expected to be even smaller than the random
sign estimate (71). Indeed, packets need not be isolated from each other as in Fig. 12. In the presence of a strong
sampling noise, or in higher dimension than D = 1, packets will overlap. As a consequence, the number of packets
’cut’ by the threshold and their size will determine the amplitude of ∆Σ. Further investigations of those points are
needed.

V. ADAPTIVE ALGORITHM FOR THE INVERSE ISING PROBLEM

A. Procedure to construct and select clusters

As explained above discarding the cluster-entropies smaller than a threshold Θ is an efficient step against overfitting
of the sampling noise. In addition, for systems with dilute and strong interactions, we expect that only the clusters
of neighboring sites on the interaction network will have substantial entropies. These arguments provide a heuristic
basis for the threshold-based truncation of the expansion (27).
How can we implement the truncation scheme in practice? The combinatorial explosion of the number of clusters

of size K among N sites impedes any brute force computation approach, as soon as N is larger than a few tens. Even
for small–N system for which it is feasible, computing ∼ 2N cluster-entropies and, then, discarding most of them does
not sound like an efficient procedure.
We propose below an alternative approach, based on a recursive and selective construction of relevant clusters.

The approach is based on the principle that clusters with large entropies should be compatible with the interaction
network to be inferred. Suppose that two clusters Γ and Γ′ have both large entropies, and share most of their spins.
Then, the union Γ ∪ Γ′ is a good candidate for a bigger cluster. If the entropy of the union cluster is large, a new
part of the interaction network will be unveiled. Conversely, if it is small, no new interaction path with respect to
the one discovered from Γ and Γ′ separately exists. Hence, combining strongly overlapping clusters should allow us
to progressively deepen our knowledge of the local structure of the interaction graph.
The above heuristics is formalized as follows:

A1. Initial step: build the list of all clusters of size one: L1 = {(i) : i = 1, 2, . . . , N}. All the other lists LK for
K ≥ 2 are empty.

A2. Iteration: assume the current size of clusters is K ≥ 1, i.e. LK is not empty while LK+1 is empty. For every
pair Γ1,Γ2 in LK :

A21. Construction: build Γ = Γ1 ∪ Γ2

A22. Selection: if Γ is of size K + 1 and if |∆SΓ(p)| ≥ Θ, then select Γ and add it to LK+1.

A3. Recursion: if at least one cluster has been selected, then add 1 to K, and go to step 2 to pursue the construction
process. If no cluster has been selected, the construction process is over.

The first condition in A22 is about the size of Γ. The union of two clusters of size K has size K + 1 if and only
if they have exactly K − 1 common spins. Γ1 = (i1, i2 . . . iK−1, x) and Γ2 = (i1, i2, . . . , iK−1, y) can be merged into
Γ = (i1, i2, . . . , iK−1, x, y); the ordering of x, y, and of the il’s is irrelevant here.
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B. Calculation of ∆SΓ(p)

Step A22 requires the calculation of the cluster-entropy ∆SΓ(p) for each selected cluster Γ (of size K). In order
to do so we make use of the formula

∆SΓ(p) = SΓ(p)− (S0)Γ(p)−
∑

Γ′⊂Γ
(Γ′ 6=Γ)

∆SΓ′(p) , (72)

which can be easily deduced from (27). The procedure is as follows:

B1. calculate the subset-entropy SΓ(p) through the minimization of SIsing(J|p) (7) with respect to the fields and
couplings. The partition function Z[J] is computed as the sum over the 2K configurations of the spins in Γ.

B2. substract the reference entropy (S0)Γ(p). For the mean-field reference entropy, (S0)Γ(p) = 1
2 log detMΓ(p),

according to formula (21); MΓ(p) is the K ×K restriction of matrix M(p) to the indices i1, i2, . . . , iK in Γ. In
presence of a regularization term (13) equation (36) has to be used instead of (21) to calculate (S0)Γ(p).

B3. Substract the entropies ∆SΓ′(p) of all the sub-clusters Γ′ of size K ′ < K, included in Γ.

The last step (B3) assumes that the entropies of all the sub-clusters of Γ are known, i.e. have been computed at
a previous step in the algorithm. This is true for K ′ = 2, but not necessarily so for K ′ ≥ 3. To circumvent this
difficulty we maintain at all times during the execution of the algorithm the list Lall of all the clusters and of their
entropies calculated so far; Lall is a larger list than the one of the selected clusters (union of all LK). The procedure
to compute ∆SΓ(p) is then:

B0. build the list L̂ of all the sub-clusters Γ′ in Γ not already present in Lall. For each Γ′ ∈ L̂, starting from the
smallest sub-cluster and ending up with the largest one, run steps B1, B2, B3 to obtain ∆SΓ′(p), and add Γ′

and its entropy to the list Lall.

The ordering of L̂ ensures that all the sub-clusters of Γ′ required to calculated its entropy are in Lall when step B3

is executed.

C. Calculation of the cross-entropy, couplings and fields

Once the construction process is finished, the list Lsel = L1∪L2∪L3∪. . .∪LKmax of all selected clusters is available.
Here, Kmax is the size of the largest cluster selected by the construction procedure. We then

C1. estimate the cross-entropy through

S(p) = S0(p) +
∑

Γ∈Lsel

∆SΓ(p) . (73)

Next we need to estimate the values of the fields and of the couplings, solution to the inverse Ising problem. One
possibility would be to use recursion relations similar to (72) for ∆hi,Γ(p) and ∆Jij,Γ(p), that is, the contributions to,
respectively, the field hi and the coupling Jij coming from the cluster Γ. Next we could sum up those contributions
over the clusters included in Lsel. However, to save memory space, it is possible to resort to the following, alternative
procedure:

C2. define the ’multiplicities’ mΓ of the subsets Γ through:

C21. let Lsub be the list of all clusters in Lsel and of all their subsets. Initialize mΓ = 0 for every Γ ∈ Lsub.

C22. For each Γ ∈ Lsel, and for each Γ′ ⊂ Γ, add (−1)K−K
′

(see (29)) to mΓ′ , where K,K ′ are the sizes
of, respectively, Γ,Γ′. The sub-clusters Γ′ = Γ must be taken into account in the addition process.

C3. estimate the fields and the couplings through

hi(p) = (h0)i(p) +
∑

Γ∈Lsub:(i)⊂Γ

mΓ

(

hi,Γ(p)− (h0)i,Γ(p)
)

,

Jij(p) = (J0)ij(p) +
∑

Γ∈Lsub:(i,j)⊂Γ

mΓ

(

Jij,Γ(p)− (J0)ij,Γ(p)
)

. (74)
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The fields hi,Γ and the couplings Jij,Γ in step C3 above are the ones obtained through the minimization of SIsing(J|p)
over J = {hi,Γ, Jij,Γ} in step B1. The fields (h0)i and the couplings (J0)ij are (minus) the derivatives of the reference
entropy S0(p) with respect to pi and pij , see formulas (22). The fields (h0)i,Γ and the couplings (J0)ij,Γ are their
counterparts for the subset Γ only, i.e. the derivatives of (S0)Γ(p); their expressions are given by (22) again, upon
substitution of the N ×N matrix M(p) with the K ×K matrix MΓ(p) restricted to the K elements of Γ only.

D. Pseudo-code of the algorithm

We now give the pseudo-code useful for the implementation of the procedures above. To improve the readability
the code is broken into several parts.
We start with Algorithm 1, which computes the cross-entropy and the reference entropy for a subset Γ. The energy

function HIsing is defined in (6). The minimization over J can be done using standard numerical algorithms for
convex functions. A speed-up is generally obtained when we start with JMF , the value of the interaction parameters
obtained from the MF approximation (22), as an initial guess for the value of J [45]. In the absence of regularization,
the parameter γ is set to 0. It is straightforward to change the pseudo-code to introduce the L1-regularization instead
of the L2-norm, see formulas (14).

Algorithm 1 Computation of entropy SΓ(p)− (S0)Γ(p)

Require: Γ (of size K), data p, regularization parameter γ

Computation of SΓ:

Define
(

SIsing

)

Γ
[J|p]← log





∑

σ∈{0,1}K

exp
(

−HIsing [σ|J]
)



−
∑

i∈Γ

hi pi −
∑

i<j∈Γ

Jij pij + γ
∑

i<j

J2
ij pi (1− pi) pj (1− pj) ,

where
J = {hi, Jij} is of dimension 1

2
K(K + 1).

SΓ(p)← min
J

(

SIsing

)

Γ
[J|p]

Computation of (S0)Γ:

MΓ ← K ×K matrix with elements (MΓ)ij =
pij−pipj√

pi(1−pi)pj(1−pj )
with i, j ∈ Γ

(S0)Γ(p)← 1
2
log detMΓ if γ = 0, or use formula (36) if γ > 0.

Output: SΓ(p)− (S0)Γ(p)

Algorithm 2 calculates the entropy ∆SΓ of the cluster Γ and maintains the list Lall of all cluster-entropies computed
so far. It calls Algorithm 1 as a subroutine.

Algorithm 2 Computation of cluster-entropy ∆SΓ(p)

Require: Γ (of size K), data p, list Lall = {Γ′,∆SΓ′(p)} of known cluster-entropies.

L̂← {Γ′ : Γ′ ⊂ Γ and Γ′ /∈ Lall} (ordered in increasing sizes)

for Γ′ ∈ L̂ do
∆SΓ′(p)← SΓ(p)− (S0)Γ(p)−

∑

Γ′′⊂Γ′

(Γ′′ 6=Γ′)

∆SΓ′′(p) using list Lall of cluster-entropies calculated so far

update Lall ← Lall U {Γ′,∆SΓ′(p)}
end for

Output: ∆SΓ(p) and Lall

We can now give the core part of the procedure, which produces the list of selected clusters:
Algorithm 4 calculates the estimates for the total cross-entropy, and for the interaction parameters once the list

of selected clusters Lsel has been obtained. It requires Algorithms 1 and 2; function (SIsing)Γ and matrix MΓ are
defined in the pseudo-code of Algorithm 1.
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Algorithm 3 Adaptive cluster algorithm for the inverse Ising problem

Require: data p, threshold Θ

L1 ← {(i) : i = 1, 2, . . . , N}
Lsel ← ∅
K ← 1

while LK is not empty
Lsel ← Lsel U LK

K ← K + 1
LK ← ∅
for Γ1,Γ2 ∈ LK−1 do

Γ← Γ1 ∪ Γ2

if Γ is of size K − 2 and if |∆SΓ(p)| < Θ, then LK ← LK U Γ
end for

end while

Output: list Lsel of selected clusters

Algorithm 4 Estimates for the cross-entropy and for the interaction parameters

Require: data p, list Lsel of selected clusters

Computation of cross-entropy S:
compute S0(p) using formula (21) or (13)

SΓ(p)← S0(p) +
∑

Γ∈Lsel

∆SΓ(p)

Computation of fields and couplings J = {hi, Jij}:
compute {(h0)i(p), (J0)ij(p)} using formula (22)
Lsub ← {Γ′ ⊂ Γ : Γ ∈ Lsel}
for Γ′ ∈ Lsub do

mΓ′ =
∑

Γ∈Lsel:Γ
′⊂Γ

(−1)|Γ|−|Γ′|, where |Γ|, |Γ′| are the sizes of Γ,Γ′.

{hi(p), Jij(p)} ← argmin
J

(

SIsing

)

Γ
[J|p]

compute {(h0)i,Γ(p), (J0)ij,Γ(p)} using formula (22), with MΓ replacing M .
end for
compute {hi(p), Jij(p)} using formula (74)

Output: S(p), {hi(p), Jij(p)}

VI. APPLICATIONS

In this Section we report the results of our algorithm when applied to data generated from Ising models with diverse
interaction structures and various numbers B of sampled configurations. We define:

• the number Nclu of clusters generated by the algorithm and the size Kmax of the largest clusters.

• the average error on the inferred couplings and fields:

ǫh =

(

1

N

∑

i

(hinf
i − hi)

2

)
1
2

, ǫJ =





2

N (N − 1)

∑

i<j

(J inf
ij − Jij)

2





1
2

. (75)

Here, J inf
ij and hinf

i denote the values of, respectively, the inferred couplings and fields, while Jij and hi are the
values of the couplings and fields in the model used to generate the data.

• The error bars δhi and δJkl on the inferred couplings and fields, resulting from the finite sampling. Those
statistical fluctuations are asymptotically given by the inverse of the susceptibility matrix of the cross-entropy
SIsing, see equation (17). The entries of χ can be calculated from a Monte Carlo simulation, to estimate the
multi-spins correlations. In practice, a good approximation of χ can already be obtained from the empirical
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average over the B configurations in the sampling set. This procedure avoids the use of the Monte Carlo. In
the presence of a L2-regularization (13), γ pk(1 − pk)pl(1 − pl) is added to the diagonal element χkl,kl of the
susceptibility matrix, before the inversion is performed. Hence, all the eigenvalues are strictly positive and the
inverse is well defined. The inversion of χ can be done with standard linear algebra routines.

Inferred couplings are called ’reliable’ when their absolute value is larger than three times their statistical
error-bar: |Jkl| > 3 δJkl.

• The reconstructed observables, preci and crecij , which we compare to the data, pi and cij . Those reconstructed

averages are obtained using Monte Carlo simulations of the Ising model with the inferred fields, hinf
i , and

couplings, J inf
ij . For those simulations the number of sampled configurations is chosen to be much larger than

B, e.g. 100B, to minimize the uncertainty on the reconstructed averages.

• the relative errors on the reconstructed averages pi and connected correlations cij , with respect to their statistical
fluctuations due to finite sampling:

ǫp =

(

1

N

∑

i

(preci − pi)
2

(δpi)2

)
1
2

, ǫc =

(

2

N (N − 1)

∑

k<l

(creckl − ckl)
2

(δckl)2

)
1
2

. (76)

where the denominators in (76) measure the typical fluctuations of the data expected at thermal equilibrium,
see (18), and

δckl = δpkl + pkδpl + plδpk . (77)

If not explicitly stated otherwise we start from the value Θ = 1 for the threshold and run the algorithm several times,
dividing the threshold by 1.01 after each execution. The algorithm is stopped when both errors ǫp and ǫc are close
to 1. We call Θ∗ the final value of the threshold corresponding to this criterion. Unless explicitly stated otherwise a
L2–regularization term (13) is present, with γ = 1/(10B p2 (1−p)2), where p is the average value of the pi’s (Appendix
A). As explained in Section II B the regularization term is important in case of undersampling and guarantees the
convergence of the numerical minimization of SIsing.

A. Independent Spin Model

It is instructive to run first the algorithm on the Independent Spins model, where each spin has a probability pi
to be 1, 1 − pi to be 0, independently of the other variables. Due to the noise in the sampling (finite value of B),
the connected correlations cij are not equal to zero. Figure 14 shows the outcome for a system of size N = 40, as
a function of the threshold Θ. The errors of reconstruction, ǫp and ǫc, are already smaller than one for the initial
threshold value Θ∗ = 1. For this value of the threshold, cluster of size one only are selected. In other words, the
interaction network J0, calculated from the reference entropy S0 = SMF alone, is already overfitting the data as it
attempts to reproduce the correlations due to statistical fluctuations. For smaller thresholds Θ contributions from
clusters of size K ≥ 2 allow for an even more precise reproduction of the data .

The histogram of the inferred couplings, J inf
ij , is shown in Fig. 15. It is centered around zero, and is approximately

Gaussian. The standard deviation of the distribution is compatible with the statistical error bar on couplings δJij
(17) averaged on all the couplings. For the particular case of Fig. 14, 815 of the 820 inferred couplings are away from
zero by less than three error bars, and are, therefore, classified as unreliable. This result is compatible with the fact
that the non-zero couplings are the consequence of overfitting and do not reflect any real interactions.
Another possibility to avoid overfitting in this case is to apply the cluster expansion to the entropy S in the absence

of reference entropy (S0 = 0). We find that, for Θ∗ = 1, the reconstruction errors are ǫp = 0.07 and ǫc = 0.8.
Therefore only one–spin clusters are taken into account, and all couplings are equal to zero exactly (since J0 = 0).

B. Unidimensional Ising model

We now test the algorithm on the unidimensional Ising model with first–neighbor interactions, Ji,i+1 = J , and
uniform fields, hi = h. The model is placed on a ring with N sites (periodic boundary conditions). Data p can be
computed exactly (Appendix F) or through an average over B configurations, sampled by Monte Carlo simulations.
We compare the performance of the inference procedure for various values of B and two values of J, h, corresponding
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FIG. 14: Performance of the algorithm as a function of Θ for the Independent Spin model: (a) errors ǫp and ǫc; (b) cross-
entropy S The entropy of the model in absence of sampling noise is ≃ 4.182071; (c) size Kmax of largest clusters; (d) number
Nclu of clusters. Panels (e) and (f) show the reconstructed pi and cij vs. their values in the data. Error bars on pi and cij are
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FIG. 15: Histogram of the inferred couplings for the Independent Spin model of Fig. 14, and Θ∗ = 1.815 of the 820 inferred
couplings unreliable (in gray), because compatible with zero within three standard deviations

to the correlation lengths ξ ≃ 1 (h = −5, J = 4) and ξ ≃ 9 (h = −5.95, J = 6). These values are, respectively,
smaller than ξc ≃ 4.3, the correlation length below which the cross-entropy expansion (65) is absolutely convergent,
and larger than 2 ξc ≃ 8.6, above which condition (70) is violated, see Section IVD.

1. Accuracy of the cluster expansion as a function of the threshold: errors on the entropy, couplings and fields

We start with the small–ξ case. Figure 16(top) shows ǫS , the absolute value of the difference between the cross-
entropy S(p,Θ) (48) and the entropy of the model for perfect sampling, and the errors ǫJ and ǫh, for various values of
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FIG. 16: Errors on the entropy (ǫS), the couplings (ǫJ), and the fields (ǫh) vs. threshold Θ for the unidimensional Ising model
with ξ = 1 (top) and ξ = 9 (bottom). Full lines correspond to large sampling noise (B = 105 for ξ = 1, B = 103 for ξ = 9),
dashed line to weak sampling noise (B = 107 for ξ = 1, B = 105 for ξ = 9). The size is N = 30.

B. We observe that ǫS sharply decreases around Θ1 = 0.05, that is, the entropy of nearest-neighbor clusters ∆S(i,i+1);
discarding all entropies smaller than this value would be exact in the perfect sampling case (Section III C 2). As Θ
is decreased, ǫS exhibits fluctuations centered around a discrete sequence of threshold values, Θd, with d ≥ 2. As
explained in Section III C 2, these values correspond to the cluster-entropies ∆S(i,i+d) in the absence of noise, see
identity (45). Fluctuations spread over a small window around Θd. They correspond to imperfect cancellations
of ’packets’ of entropies whose associated clusters share the same interaction path with length L = 2d (Section
IVD). Since the correlation length ξ is small, and, therefore, the cross entropy expansion is absolutely convergent,
the magnitude of the fluctuations quickly decreases with d. For B = 105 two bursts of fluctuations are visible
(corresponding to d = 2, 3). For B = 107, fluctuations are smaller and spread over narrower windows; only the d = 2
burst can be observed. In between two bursts of fluctuations, ǫS reaches a plateau. Note that the value of ǫS on the
plateau is not zero due to the sampling noise (finite B).
The errors on the inferred couplings and fields have the same behaviour as ǫS (Fig. 16(top)). Their magnitude are

comparable to the expected statistical fluctuations calculated from the 4-spin correlations (inverse susceptibility in
(17)), which decrease as B−1/2.
We now test our algorithm on the unidimensional Ising model with a large correlation length, ξ = 9. The errors

ǫS , ǫJ , ǫh are shown in Fig. 16(bottom) as functions of Θ. The correlation length of the model is larger than 2ξc,
at which the series of the squared cluster-entropies is divergent. Therefore, we expect large fluctuations of ǫS ,
corresponding to packets of clusters with the same interaction path (Section IVD). Figure 16 shows, indeed, that
fluctuations are much larger for ξ = 9 (bottom) than for ξ = 1 (top). Furthermore, fluctuations do not decrease much
in amplitude as Θ is decreased. In the case of severe undersampling (B = 1000) the notion of bursts of fluctuations
separated by plateaus is blurred out. The distributions of cluster-entropies in a packet is so wide that it overlaps with
the distributions of entropies associated to the neighbouring packets. As for the previous case the magnitude of ǫJ , ǫh
are comparable to the expected statistical fluctuations calculated from (17).
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FIG. 18: Performance of the algorithm on the unidimensional Ising model with ξ = 9, B = 103 (full-bold line) and B = 105

(dashed line). For the largest sampling noise case (B = 103) at the threshold Θ∗ ≃ .104, 89 clusters of size K = 2, 92 clusters
of size K = 3, 35 clusters of size K = 4, and 2 clusters of size K = 5 are selected. The reconstruction of data pi and cij is
shown for the B = 103 case. Error bars on pi and cij are computed from (77).

2. Quality of reconstruction and choice of the threshold Θ∗

We now study the reconstruction errors ǫc and ǫp as functions of Θ, for the small and large correlation lengths and
for the weak and strong sampling noises. We show in Fig. 17 the errors ǫc and ǫp, as well as the maximal size, Kmax,
and the number, Nclu, of clusters vs. the threshold Θ in the case of a small correlation length, ξ = 1 . The threshold
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at which both ǫc and ǫp are close to 1 can be chosen in the range 0.0007 < Θ∗ < 0.003, for which all the clusters
of lengths L ≤ 4 are processed. It is possible to check in Fig. 16(top) that this threshold value gives the minimum
values of ǫS , ǫJ , ǫh . Contrary to the case of perfect sampling, it is not sufficient to take into account clusters with
contour length L = 2 only. The selected clusters correspond to three groups of N = 30 clusters each; the first group
gathers the clusters (i, i + 1) (L = 2), the second one, the clusters (i, i + 2) (L = 4) and the third one, the clusters
(i, i + 1, i + 2) (L = 4). In Fig. 17 we show the reconstructed averages pi and correlations cij , at Θ∗ and for the
largest sampling noise case B = 105, vs. their values in the data . The agreement is very good, and falls within the
statistical fluctuations expected at equilibrium for the Ising model, given in (77). We stress that the optimal value of
the threshold and the maximal size of selected clusters depend on the particular realization of the data p, and can
vary from sample to sample. By further decreasing the threshold Θ below Θ∗, the reconstruction errors ǫp and ǫc
decrease to values smaller than one (Fig. 17). This regime corresponds to an overffiting of the data, as the errors on
the couplings, ǫJ , and on the fields, ǫh, cease to decrease (Fig. 16(top)).
Results for the case of a larger correlation length (ξ = 9) with B = 105 and B = 103 sampling configurations are

reported in Fig. 18. For the poor sampling case (B = 103) plateaus are not present any longer, but a good inference
is still obtained for a value Θ∗ of the threshold, which, as in the ξ = 1 case, corresponds to the summation of all the
clusters with contour length L = 4. This finding supports the discussion of Section IVC: the contour length required
for a good inference is largely independent of the correlation length. However, in the poor sampling case, finding the
right value for Θ∗ is harder for larger ξ due to the mixing of packets.

3. Quality of the inference: histograms of couplings

To better understand the quality of the inference we plot in Fig. 19 (up and middle panels) the histogram of the

inferred couplings J inf
ij at the threshold Θ∗. The distribution is bimodal: a Gaussian-like peak centered in J inf = 0

and a smaller distribution around J inf = 4. The two sub-distributions are separated by a wide gap. The inference
algorithm makes no classification error: the sub-distribution centered around J inf = 0 contains all the pairs (i, j)
such that Jij = 0, and the one around J inf = 4 includes all the pairs of nearest neighbours (i, i+1). All the couplings
centered around zero are unreliable. Moreover the standard deviation of the distribution of the couplings around the
zero value (equal to the minimal value of ǫJ reached on the plateau in Fig. 16 ) agrees with the statistical fluctuations
(17); all the couplings around zero are therefore unreliable. The structure of the interaction network is perfectly
recovered.
We show the histogram of couplings for Θ > Θ∗, i.e. ǫc > 1, in Fig. 19 (bottom); the structure of the interaction

network is still perfectly recovered but the values of the positive inferred couplings is less accurate. The histogram
of inferred couplings for the large correlation length , ξ = 9, is shown in Fig. 20. Even when the sampling noise is
large, a good separation of the two sub-distributions corresponding to interacting and non-interacting pairs of spins is
achieved for large values of the threshold Θ∗, and the couplings are correctly inferred (up to the expected statistical
fluctuations).

C. Regular bidimensional grid

We now analyze the performance of the algorithm on bidimensional grids of different sizes, N = N ′ ×N ′. Nearest
neighbors on the grid interact through the coupling J . The value of J ≃ 1.778 is chosen to make the grid critical in
the thermodynamical limit, N ′ → ∞ [47, 48]. Hence, the system is at the paramagnetic/ferromagnetic critical point,
and the correlation length ξ′ diverges with N ′.
We have described in Section IVA and Fig. 6 the partial cancellation of the cluster-entropies for a small bidimen-

sional grid (N ′ = 3), and no sampling noise. Due to this cancellation property, taking into account clusters of contour
length L ≤ 4 was sufficient to obtain a very accurate approximation to the cross-entropy. Hereafter, we show that
this result is not affected by the presence of sampling noise. Furthermore, we will see that the size of the clusters
necessary for a good inference of the interactions remains rather constant when the grid size is increased from N ′ = 7
to N ′ = 20, and is thus, as in Section VIB, largely independent of the correlation length ξ.

1. The small 3× 3 grid revisited: influence of the sampling noise

We start with the 3 × 3 grid of Section IVA, for which the summations of all clusters up to size K = 9 gives
the exact solution of the inverse problem, and all 1- and 2-point averages can be calculated exactly in the perfect
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sampling case. The reader is kindly referred to Fig. 6 and to the related discussion. Figure 21 shows the errors
on the entropy, the couplings, the fields, the reconstructed 2- and 1-point averages, and the size and the number of
clusters as functions of Θ. For a given amount of sampling noise (set by the value of B), the errors ǫS, ǫJ , ǫh follow
their perfect-sampling counterparts, until a threshold value Θsat, and they saturate for Θ < Θsat. The saturations
are interrupted by fluctuations due to the imperfect cancellations of clusters within a packet (Section IVD). The
saturation values of ǫJ and ǫh decrease with increasing B, and are compatible with the expected statistical fluctuations
δJij given by (17). The value of Θsat approximately coincides with the threshold Θ∗, at which both ǫc and ǫp are
≃ 1 (Fig. 21). For B = 4500, only clusters of size K = 2 are taken into account at Θ∗. For B = 107, clusters made
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of spins on the elementary squares of Fig. 5 and of size up to K = 4 are selected, e.g. 1, 5 or 1, 2, 4, 5 with L = 4 in
Fig. 5, while clusters such as (1, 2, 3) or (1, 3), which have the same contour length but are not on elementary squares,
are discarded. At Θ∗ the histogram of the inferred couplings is made of two far apart sub-distributions (not shown):
the first one corresponds to the 12 non zero couplings and is centered around J inf ≃ 1.8, and the second one, peaked
around J inf = 0, contains the remaining 24 pairs of sites. Hence, the structure of the interaction graph is correctly
found back.

2. Study of larger critical grids

We now turn to larger grids N ′ × N ’, where N ′ ranges between 7 and 20. Data are calculated from B = 4500
configurations sampled through a Monte Carlo simulation. The error ǫJ on the couplings is shown in Fig. 22. As Θ
decreases, ǫJ saturates to a value close to the average of the expected statistical error, δJij , which lies between .1
and .2. Saturation begins at large values of the threshold, even when the linear size N ′ of the grid is increased. The
asymptotic values depends strongly on N due to the non periodic boundary conditions [57].
The reconstructions errors ǫp and ǫc are shown in Fig. 23. The maximal size of the clusters at the optimal threshold
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Θ∗ is bounded (Kmax ≤ 4), as the correlation length ξ diverges with N ′. As a consequence, the running time of
the algorithm increases linearly with N . For threshold values smaller than Θ∗, ǫp and ǫc decrease. The 7 × 7 grid
in Fig. 23 provides a clear illustration of data overfitting. Keeping B fixed while N ′ and N increase make the data
effectively more and more noisy. This is the reason why the value of Θ∗ slightly increases with N .
The histograms of the inferred couplings at the threshold Θ∗ are shown in Fig. 24. The structure of the grid is

perfectly reconstructed for all sizes N ′. We find that all the inferred couplings in the sub-distribution centered around
zero are smaller (in absolute value) than three times their standard deviation (corresponding to the asymptotic value
of Fig. 22) and are, therefore, unreliable.

D. Randomly diluted bidimensional grid

We now remove a fraction 1−ρ of the couplings on the grid, independently and at random. Our goal is to study how
the algorithm performs on such disordered systems, at the phase transition and in the low temperature phase. We
will compare the performance with another low complexity algorithm, the regularized logistic regression algorithm,
guaranteed to perform well at high temperature and to fail at low temperature [15]. To compare with the numerical
experiments of [16], we have generated 7 × 7 bidimensional grids, and keep each bond with probability ρ = .7. The
remaining bonds are all equal to J [58]. We generate, for each value of J ranging from 0.4 to 4.4, eight randomly
diluted grids. For each grid we calculate the data p by sampling over B = 4500 configurations generated by a Monte
Carlo dynamics.

1. Inference of the network structure from the mean field entropy SMF

Our first task consists, as in [16], in reconstructing the structure of the interaction graph only. We do not want
to accurately determine the value of the coupling constants Jij , but only if it is positive or null. This task is easier
than the precise inference of the couplings, and we will first handle by approximating the cross-entropy S with the
reference entropy S0 = SMF only. Equivalently, we choose Θ∗ to be large enough that no cluster is selected by our
algorithm. We compute the mean-field couplings, (J0)ij , and, for each pair (i, j), and decide that a bond is present if
(J0)ij > J/2, absent otherwise. The performances of this simple, Mean-Field algorithm are shown in Fig. 25. We say
that the neighborhood of a vertex i is reconstructed if the sets of its neighbors j (Jij 6= 0) and of its non-neighbors
(Jij = 0) are correctly inferred. In Fig. 25 (top panel) we report the fraction Qsucc of the neighborhoods which are
reconstructed (straight line), as a function of the coupling strength J . We compare the performance of the mean-field
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FIG. 25: Probabilities that a neighborhoods is reconstructed (top) and that a bond is inferred (bottom) as functions of
the coupling J for a bidimensional random 7 × 7 grid density ρ = .7 and for various values of the numbers B of sampled
configurations. Error bars are calculated from the standard deviations over eight random grids. Probabilities were obtained
from the simple Mean-Field algorithm (S0 = SMF , Θ = 1). The value of Qsucc (top) is compared to the performances of the
pseudo-likelihood algorithm (Rlr) of [15, 16] in the top panel.

algorithm with the pseudo-likelihood algorithm of [15] in Fig. 25(right). Contrary to the pseudo-likelihood algorithm
case, the neighborhoods are perfectly reconstructed at the phase transition. Furthermore, Qsucc remains large in the
ferromagnetic phase: for instance, for J = 3.2, more than 80% of neighborhoods are perfectly inferred. For very large
J (low temperatures) the average pi are too close to 0 in the down state and to 1 in the up state. Most of the sampled
configurations coincide with one of the two ground states, and the inference is difficult. Fig. 25(top panel) shows the
increase of Qsucc resulting from a ten-fold increase of B.
Another measure of the performances is shown in Fig. 25(bottom panel). We plot Psucc, the fraction of bonds in

the grid correctly predicted to exist, averaged over the data realizations, as a function of the coupling strength J . For
J = 3.2 more than 99.78% (respectively 99.96% ) of the bonds are correctly predicted with B = 4500 (respectively
B = 45000) configurations. For even larger values of the coupling constant, J = 4, more than 95 % (respectively
99%) of the bonds are correctly predicted with B = 4500 (respectively B = 45000) with the Mean-Field algorithm.
In Section VID3 we show that the probability of success increases in the ferromagnetic phase, when using our

algorithm with a well-chosen threshold Θ rather than the simple Mean-Field procedure (Θ = 1), e.g. all neighborhoods
are perfectly reconstructed for J = 3.2 (Qsucc = 1).

2. Is thermalization relevant to the inference at low temperatures?

The diluted bidimensional grid, with a fraction ρ = .7 of non-zero bonds, undergoes a transition from a paramagnetic
to a ferromagnetic phase at the value Jcrit(ρ = .7) ≃ 2.8 (vertical line in Fig. 25) in the infinite size limit [47, 48]. In
the ferromagnetic phase, J > Jcrit(ρ = 0.7), and for small bidimensional grids, two competing ’states’ coexist: the
’down’ state, where most spins are 0, and the up state, where most spins are equal to 1. The system ’jumps’ from
one state to the other, as shown by the time-dependence of the average activity,

µ(t) =
1

N

N
∑

i=1

σi(t) , (78)

where t is the Monte Carlo time. Figure 26(a) shows that the two states are equally sampled on a 9 × 9 grid, with
NA = 10, 000 single spin-flip attempts with the Metropolis rule in between two sampled configurations (the results of
Fig. 25 on the 7× 7 grid were obtained with the same value of NA). To investigate the performance of the algorithm
when the two states are not well sampled we have studied a 9×9 grid, with NA = 100 and NA = 1, 000. For NA = 100,
fig. 26(b) shows that few transitions occur, and that the two states will likely not be weighted equally. On larger
12× 12 grids no jump occurs, even with NA = 1, 000 spin-flip attempts (Fig. 26(c)). The values of the spin averages
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FIG. 27: Performances of the inference algorithm for the 7 × 7 randomly diluted grid, with J = 3.2, B = 4500, NA = 105.
Left: Relative errors ǫp, ǫc as functions of the threshold (top) and comparison of reconstructed and data correlations at Θ∗

(bottom). Middle and Right: comparison of the inferred and true fields (top) and histograms of inferred couplings (bottom) for
our cluster algorithm and the mean field procedure. Color code for the histograms: brown/gray: unreliable couplings (which
also correspond to zero couplings in the true network), black : reliable couplings. The two sub-distributions are normalized
separately.

pi will strongly vary between the three cases above: pi ≃ .5 in the mixed case (a), pi ≃ .7 in the particular realization
(b) of the partially mixed case, and pi close to zero in case (c). Remarkably the probability of success of the algorithm
is not sensitive to the nature of the mixing. Fig. 26(d) shows, indeed, that the reconstruction performances do not
significantly decrease even in the partially and non mixed cases compared to the fully thermalized case.

3. Inference of the couplings and reconstruction of 1- and 2-point averages with the cluster expansion

It is harder to determine the values of the fields and of the couplings and to reconstruct the frequencies than to infer
the structure of the interaction graph alone. To this aim the minimization of the MF entropy SMF is generally not
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FIG. 28: Performance of the inference algorithm in the case of poor mixing, for a 7 × 7 randomly diluted grid, with J = 3.2,
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i vs. their true values for Θ∗ = 0.05 (top) and histogram of the inferred

couplings J inf (bottom). As usual, unreliable couplings, which correspond to zero couplings in the true network, are depicted
in gray, and reliable couplings in black.

sufficient, and the cluster expansion of S − SMF has to be carried out. In Fig. 27 we show the relative errors ǫp and
ǫc in the reconstruction of one- and two-site frequencies as a function of the threshold Θ for the same 7× 7 randomly
diluted grid as in Section VID1. We also compare the fields and couplings inferred with our cluster algorithm (middle
panels in Fig. 27, Θ∗ = .05) to the ones found with the simple MF procedure (right panels in Fig. 27, large value
of Θ). Note that the small error done in the graph learning for J = 3.2 (Psucc = 0.997) can be avoided when the
threshold value is optimized for each data realization.
We show in Fig. 28 the performances of the algorithm in the case of poor mixing, when the two states are not equally

sampled. For the particular realization corresponding to Fig. 28, the frequencies are pi ≃ 0.3 instead of pi ≃ 0.5. In
spite of the poor mixing the inference of the fields and couplings is as accurate as in the case of well-mixed sampling.
The difference between the fields corresponding to the apparent frequencies pi ≃ 0.3 and the true one (pi = .5) are,
indeed, smaller than the statistical uncertainty on the fields due to the limited sampling (finite value of B). The
reason is that, near a critical point, a small variation in the field is sufficient to produce a large change in the average
values of the spins.

E. Erdös-Renyi random graphs

In this Section we report the results of our inference algorithm when applied to disordered Ising models on random
graphs. The random networks are generated from the Erdös-Renyi ensemble, where M = d

2 N edges are drawn,
uniformly and at random, between N points. Parameter d is the average degree of a vertex on the network.
Figure 29 shows the outcome of the algorithm when data are generated from an Erdös-Renyi model of connectivity

d = 10. On the selected bonds (i, j) the couplings Jij were chosen uniformly at random in [−3; 3]. All other
couplings Jij were set to zero, and the fields were hi = −1. Values of the parameters are such that the system
is in the paramagnetic phase (in the thermodynamic limit). Panel A shows the inference with good sampling (the
data are obtained by averaging over B = 106 Monte Carlo configurations), while Panel B shows the inference
with poor sampling (B = 103). At Θ∗ the data are reconstructed within the expected statistical fluctuations and,
correspondingly, couplings are found back within the statistical error bars δJij . In the case of a large sampling noise
case B = 103, the statistical fluctuations δJij are so large that most of the inferred couplings are unreliable. The
inference of the complete network is thus not possible. The maximal size of clusters at θ∗ increases with the average
degree (Section VIF); we find Kmax = 9 and Kmax = 7 for, respectively, B = 106 and B = 103.
Fig. 30 shows the outcome of the algorithm on an Erdös-Renyi random graph with a smaller connectivity, d = 5,

and for values of the couplings Jij chosen uniformly at random in [−4; 4]. The fields are set to hi = − 1
2

∑

j( 6=i) Jij ,

in such a way that the corresponding fields in spin variable ±1 vanish. This is an example of a smaller connectivity
system in the spin-glass phase. We have studied the performance of the algorithm as a function of the threshold Θ,
by varying the system size N from 50 to 200 and the number of sampled configurations from B = 1000 to 10000. The
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FIG. 29: Outcome of the inference algorithm for an Erdös-Renyi random graph with N = 50 spins, connectivity d = 10, and
with B = 106 (a) and B = 103 (b) sampled configurations. For each value of B we show the errors ǫp, ǫc vs. θ, the inferred vs.
data values of the correlations cij , and of the couplings Jij . A few large error bars over Jij (calculated from χ−1) are shown.
Values of Jij were chosen uniformly at random in [−3; 3], and fields were set to hi = −1.

algorithm is able to reach ǫc = 1 at large thresholds, with a small number of selected clusters, e.g. Nclu < 1000 and
Kmax = 7 for N = 100. The threshold Θ∗ for which ǫc = 1 corresponds to the beginning of the plateau for ǫJ . For
smaller thresholds ǫc decreases and data are overfitted. The height of the plateau for ǫJ coincides with the calculated
statistical error δJ ; it scales as 1/

√
B and does not strongly depend on N .

F. Computational Time

For a given value Θ of the threshold the computational time can be estimated through

time ≃
Kmax
∑

K=1

Nclu(K) 2K , (79)

where Nclu(K) is the number of selected clusters of size K, and 2K is the number of operations necessary to calculate
exactly the partition function of a sub-system of size K. As the number of selected clusters depends on the interaction
graph, the computational time is sensitive to the structure of the interaction graph, while it does not depend too
much on the correlation length of the system. For instance, the number of processed clusters and the computational
time for Erdös-Renyi graphs is larger for the connectivity d = 10 than for d = 5.
Moreover, as the sampling noise increases (the value of B is made smaller), so does the threshold value Θ∗. As less

precision is needed in the reconstructed frequencies and correlations, the size of the selected clusters is reduced. As a
consequence, the computational time is reduced. Figure 31 illustrates this statement for Erdös-Renyi random graphs:
the running time increases with the quality of the sampling, i.e. increases with the value of B. In some very noisy
cases, however, large size clusters which are due only to the noise and do not reflect the interaction network can be
processed. As an example, the number of clusters for the unidimensional Ising model with ξ = 9, B = 1000 is larger
than the one for B = 4500. Another illustration is given by the diluted 7 × 7 grid with J = 3.2, which requires the
processing of many clusters of large size (Kmax = 8).

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an adaptive cluster expansion to infer the interactions between a set of Ising
variables from the measure of their equilibrium correlations. We have discussed the statistical mechanics of this
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of Jij were chosen uniformly at random in [−4; 4], and fields were set to hi = − 1

2

∑

j( 6=i) Jij . Left: error ǫJ on the inferred

couplings as a function of Θ for N = 50 and B = 1000, 4500, 10000 configurations. Middle: error ǫJ vs. Θ for N = 50, 100, 200
and for B = 4500. Right: ǫc (top) and Kclu (middle) as functions of Θ; the inferred couplings Jinf are compared to their true
values in the bottom panel for N = 100 and threshold Θ∗.

expansion, and shown applications of the algorithm to artificial data generated using Ising models on unidimensional
and bidimensional lattices, as well as on Erdos-Renyi random graphs.
We have in particular underlined the important conditions on the inverse problem that should be fulfilled for our

algorithm to be efficient. The essential condition is that the inverse susceptibility, which determines the change of a
coupling (or a field) resulting from a change in the data (1- or 2-spin frequencies) should be well-conditioned. We
stress that this property is not incompatible with the presence of a long-range susceptibility. Hence, the inverse
problem can be easy to handle even in the presence of long-range correlations. As far as our algorithm is concerned,
this condition entails that the maximal size Kclu of the clusters which need to be taken into account remains small
even if the correlation length of the system is large.
The origin of this condition is that our algorithm builds up, by definition, an interaction network defining a well-

conditioned Ising model. Indeed, in the absence of reference entropy (S0 = 0), the cross-entropy S(p) is approximated
through a sum of a restricted number of cluster-entropies, see (30). For sufficiently large thresholds Θ, most quadru-
plets of variables, say, i, j, k, l, do not appear in any selected cluster (of size K ≥ 4); hence, most of the entries
(χ−1)ij,kl of the inverse susceptibility matrix entries vanish according to (55). In the presence of the reference entropy

S0 = SMF , χ
−1 is not guaranteed to be sparse any more due to the contribution χ−10 = − ∂S0

∂p∂p . However, when a

regularization is introduced, e.g. based on the norm L1 (14), the network of interactions (J0)ij is highly diluted, and

we expect χ−10 to be well-conditioned, too. Further investigations of this point would be very useful.
According to the discussion of Section IVC inverse problems corresponding to Ising models on finite-dimensional

lattices are well-conditioned in the perfect sampling limit. The introduction of a threshold over the minimal values
of cluster-entropies allows us to force the inverse problem to be well-conditioned even in the presence of sampling
noise. We have checked this statement on inverse problems corresponding to ’critical’ Ising models. While the
correlation length increases with the size of the system, the maximal size of the clusters, Kclu, remains roughly
constant. Therefore, the computational complexity of the algorithm increases only linearly with the system size.
An essential feature of inverse problems is that data are generally obtained from a finite sampling and, therefore,
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FIG. 31: Computational time of the cluster algorithm at threshold Θ∗ for the different examples shown Section VI. The
computational time grows with the number of processed clusters, which depends on the structure of the interaction graph and
on the number of sampled configurations more than the sole number of variables, N . For a fixed maximal size of clusters,
Kmax, the running time is roughly proportional to the number of clusters. Unless explicitly stated otherwise, the sampling is
realized in good mixing conditions. Times were measured on one core of a 2.8 GHz Intel Core 2 Quad desktop computer.

frequencies and pairwise correlations are plagued by sampling noise. Avoiding overfitting is a primary goal for an
inference algorithm. This goal is achieved, in our algorithm, by the introduction of the threshold Θ. As a result most
of the clusters are discarded, and in particular, those whose contributions would convey very little information about
the true nature of the underlying interaction network. Fixing the threshold value such that the relative reconstruction
errors ǫp and ǫc are of the order of one corresponds to the maximal accuracy allowed by the quality of the data.
The cluster expansion introduced here differs from other classical cluster expansions, developed in the contexts of

the theory of liquids and of computational physics. In particular we do not impose consistency equations for the
marginal probabilities over the clusters. Our expansion scheme is simpler, and requires only the knowledge of the
individual and pairwise frequencies of the variables in the cluster. Moreover, the cluster construction and selection
rules prevents any combinatorial explosion of the computational time.
Several points would deserve further investigations. Among them the discussion of the convergence properties of

the expansion, started in Section IVD, should be expanded and improved. A natural and interesting question is to
ask how the series behaves when the packets of Fig. 12 start mixing, i.e. in the presence of a strong sampling noise.
Another aspect which should be better understood is the influence of the construction rule. Our heuristic consists in
merging two almost completely overlapping clusters of size K to build a new cluster of size K+1 (provided its entropy
is larger than Θ). This rule has a simple intuitive interpretation, compatible with the notion of interaction path, and
attempts with other rules have been less fruitful. However, a deeper theoretical understanding and justification is
clearly needed. Last of all, the a posteriori validation of the method relies on the use of a Monte Carlo simulation
to calculate ǫc and ǫp. We have tested another procedure to avoid the use of a Monte Carlo calculation, based on a
partial resummation of the cluster contributions corresponding to the free-energy (at fixed couplings and fields). This
procedure, whose applicability goes beyond the inverse problem, will be detailed in a further publication.

Acknowledgements: We are grateful to J. Barton, J. Lebowitz, E. Speer for very useful and stimulating discus-
sions, in particular regarding the correspondence between the inverse susceptibility and the direct correlation functions
and the practical implementation of the inference algorithm. We thank E. Aurell for pointing to us the difference
between P and Q, see Section VID1.
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Appendix A: Optimal choice for the regularization parameter γ

In this Appendix we discuss how the optimal value for the parameter γ in the L2-regularization (13) can be
determined. As explained in Section II B, the regularization term can be interpreted as a Gaussian prior P0 over the
couplings. Let us call σ2 the variance of this prior. Parameters γ and 1/σ2 are related through

γ p2 (1− p)2 =
1

2 σ2 B
, (A1)

where we have assumed that the 1-site frequencies pi are uniformly equal to p. To calculate the optimal value for γ,
or, equivalently, for σ2, we start with the case of a single spin for the sake of simplicity, and then turn to the general
case of more than one spin.

a. Case of N = 1 spin

For a unique spin subjected to a field h the likelihood of the set of sampled spin values, {στ}, is Ph[σ] =
exp(B ph)/(1 + eh)B. Here p denotes the average value of the spin over the sampled configurations (2). We ob-
tain the a posteriori probability (15) for the field h given the frequency p,

Ppost[h|p] =
exp(−h2/(2σ2) +B ph−B log(1 + eh))/

√
2πσ2

P(p,B, σ2)
(A2)

where the denominator P(p,B, σ2) (marginal likelihood) is simply the integral of the numerator over all real-valued
fields h. Given p and B we plot I = − logP(p,B, σ2)/B as a function of σ2. The general shape of I is shown in
Fig. 32. The value of σ2 minimizing I is the most likely to have generated the data, and should be chosen on Bayesian
grounds.
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FIG. 32: Logarithm of the marginal likelihood (with a minus sign, and divided by the size B of the data set) versus variance
σ2 of the prior distribution of the field. Parameters are B = 100, p = .02.

For more than one spin calculating the marginal likelihood would be difficult. We thus need an alternative way
of obtaining the best value for σ2. The idea is to calculate I through a saddle-point method, and include the
Gaussian corrections which turn out to be crucial. This approach is correct when the size of the data set is large. A
straightforward calculation leads to

I ≃ log
(

1 + exp(h∗)
)

− p h∗ +
Γ

2
(h∗)2 +

1

2B
log

[

1 +
1

Γ

exp(−h∗)

(1 + exp(−h∗))2

]

(A3)

where Γ = 1/(Bσ2) and h∗ denotes the root of (1 + exp(−h∗))−1 − p+ Γ h∗ = 0. I decreases from I(σ2 = 0) = log 2
with a strong negative slope, dI/dσ2(0) ≃ −B p2, and increases as log σ2/(2B) for large values of the variance.
Expression (A3) cannot be distinguished from the logarithm of the true marginal likelihood I shown in Fig. 32.
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b. Case of N ≥ 2 spins

The above saddle-point approach can be generalized to any number N of spins, with the result

I ≃ SIsing [{hi, Jij}|p] +
1

2B
log det

(

1 +
H

Γ

)

(A4)

where SIsing was defined in (7) and χ is the N + 1
2N(N − 1) = 1

2N(N + 1)-dimensional Hessian matrix composed
of the second derivatives of SIsing with respect to the couplings and fields (10). In principle χ could be diagonalized
and the expression (A4) calculated. However this task would be time-consuming. As we have seen in the previous
subsection we expect I not to increase too quickly with σ2 (for not too small variances) and approximate calculations
of I can be done under some data-dependent hypothesis. We now give an example of such an approximation, valid in
the case of multi-electrode recordings of neural cell populations.
A simplification arises when the number B of configurations and the frequency p are such that: (a) each spin i is

active (= 1) in a number of configurations much larger than 1 and much smaller than B i.e. 1 ≪ B× p ≪ B; (b) the

number n2 of pairs of spins that are never active together is much larger than one and much smaller than N(N−1)
2 .

These assumptions are generically true for the applications to neurobiological data. For instance, the recording of the
activity of N = 40 salamander retinal ganglion cells in [2] fulfills conditions (a) and (b) for a binning time ∆t = 5 msec:
a cell i firing at least once in a time-bin corresponds to σi = 1, while a silent cell is indicated by σi = 0. More precisely:
(a) the least and most active neurons respectively fire 891 and 17,163 times (among B = 636, 000 configurations); (b)
n2 = 34 pairs of cells (among 780 pairs) are never active together.
Condition (a) allows us to omit the presence of Γ in the calculation of the fields, hi ≃ log pi, to the first order of a

large (negative) field expansion. Condition (b) forces us to introduce a non–zero Γ to calculate the couplings, with
the result that interactions between pairs i, j of cells not active together are equal to Jij ≃ log Γ + O(log log(1/Γ)).
Finally we obtain the asymptotic scaling of the entropy when Γ → 0,

SIsing ≃ n2
Γ

2
(log Γ)2 +O

(

Γ logΓ log log
1

Γ

)

. (A5)

We are now left with the calculation of the determinant in (A4). From assumption (b) the number of pairs of neurons
not spiking together is small with respect to N2, meaning that most of the eigenvalues λa of the Hessian matrix of
SIsing are non zero. Hence,

log det
(

1 +
χ

Γ

)

=

N(N−1)/2
∑

a=1

log

(

1 +
λa

Γ

)

≃ −N2

2
log Γ . (A6)

Putting both contributions to I together we get

I(Γ) ≃ n2
Γ

2
(log Γ)2 − N2

4B
log Γ . (A7)

The optimal value for the variance σ2 is the root of

dI

dΓ
(Γ) = 0 ≃ n2

2
(log Γ)2 − N2

4 B Γ
≃ n2

2
(logB)2 − N2

4
σ2 . (A8)

We finally deduce the optimal variance

σ2 ≃ 2 n2

(

logB

N

)2

. (A9)

For the data described above we find σ2 ≃ 8.

Appendix B: Expression of the entropy of clusters with size K = 3

In this Appendix, we give the analytical expression for the entropy of a cluster with K = 3 spins. Using this
expression instead of minimizing the cross-entropy (7) offers a valuable computational speed-up as there are O(N3)
clusters of size K = 3. We start with the definition of the entropy P (σ):

S3 = −
∑

σ1=0,1
σ2=0,1
σ3=0,1

P (σ1, σ2, σ3) logP (σ1, σ2, σ3) . (B1)
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We then replace the probabilities P (σ1, σ2, σ3) of the eight configurations of the three spins above with their expressions
in terms of the probabilities {pi, pkl} in the data, and of the probability p123 that the three spins are equal to 1:

P (1, 1, 1) = p123

P (1, 1, 0) = p12 − p123

P (1, 0, 1) = p13 − p123

P (0, 1, 1) = p23 − p123

P (0, 0, 1) = p3 − p23 − p13 + p123

P (0, 1, 0) = p2 − p12 − p23 + p123

P (1, 0, 0) = p1 − p13 − p12 + p123

P (0, 0, 0) = 1− p1 − p2 − p3 + p12 + p13 + p23 − p123

(B2)

The only unknown quantity (not available in p) is the probability p123. To determine p123 we impose

dS3

dp123
= 0 , (B3)

which means that the three-body coupling J123 vanishes. Condition (B3) gives a third degree equation on p123,

p3123 + αp2123 + β p123 + γ = 0 (B4)

with

α = p1 p2 + p1 p3 + p2 p3 − p1 p23 − p2 p13 − p3 p12 − p12 − p23 − p13 ,

β = p1 p
2
23 + p2 p

2
13 + p3 p

2
12 − p1 p2 p23 − p1 p2 p13 − p1 p3 p12 − p1 p3 p23 −

p2 p3 p12 − p2 p3 p13 + 2 p12 p13 p23 + p12 p13 + p12 p23 + p13 p23 + p1 p2 p3 ,

γ = p1 p2 + p3 (1− p1 − p2 − p3 + p12 + p13 + p23) . (B5)

Upon substitution of p123 in (B1) we obtain the desired cross-entropy S3, as a function of the three average values pi
and the three two-point averages pkl. The expression of the cluster-entropy is given by,

∆S(i,j,k) = S3(pi, pj , pk, pij , pik, pjk)−∆S(i,j) −∆S(i,k) −∆S(j,k) −∆S(i) −∆S(j) −∆S(k) , (B6)

according to (28). The expressions of the cluster-entropies for one and two spins are given by, respectively, (23) and
(25). Similarly, one obtains the expressions for the contributions of the 3-spin cluster to the values of the interactions
parameters by differentiating ∆S with respect to the pi’s and the pkl’s.

Appendix C: Leading diagrammatic contributions to small cluster-entropies

We analyze the dominant diagrams contributing to the cluster-entropies for the various values of the cluster sizes,
K, in the limit of small connected correlations ckl.

1. Case K = 2

The entropy ∆S(i,j) of a 2-spin cluster is the sum of all diagrammatic contributions containing two spins and an
arbitrary number of links between them, corresponding to the power of the expansion parameter Mij = cij/(pi (1 −
pi) pj (1− pj)) (Fig. 3) and Section III C1. For small values of Mij the largest contribution to ∆S(i,j) is the one with
three links (cubic power of Mij), if the reference entropy S0 = SMF removes the two-link loop diagram. The entropy
contribution of this diagram was computed in [30], with the result

∆S
(3)
i,j = αi,j (cij)

3 , (C1)

where

α
(3)
i,j =

(2 pi − 1) (2 pj − 1)

6 (pi)2 (1− pi)2 (pj)2 (1− pj)2
. (C2)

The superscript 3 refers to the power of the connected correlation.
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FIG. 33: Leading diagrams to the order 5 (top) and 6 (bottom) in the connected correlation for the entropy of 3-clusters.

2. Case K = 3

For K = 3 the leading term to ∆S(i,j,k) in powers of Mij was not derived analytically in [30]. Based on the studies
of the unidimensional Ising model and the independent spin models (Appendix F), we find that the leading diagrams
are diagrams (a), (b), (c) in Fig. 33 (bold diagrams in Fig. 3), whose sum is given by

∆S
(5)
i,j,k = α

(5)
ijk (cij)

2 (cjk)
2 cki + α

(5)
jik (cij)

2 cjk (cki)
2 + α

(5)
jki cij (cjk)

2 (cki)
2 , (C3)

with

α
(5)
ijk = − (2pi − 1) (2pk − 1)

2 (pi)2 (1− pi)2 (pj)2 (1− pj)2 (pk)2 (1 − pk)2
. (C4)

Note that α
(5)
ijk differs from α

(5)
jik. We have also found the coefficients of the subsequent diagrams, of the order of M6.

These diagrams are labelled by (d), (e), (f) in Fig. 33. Their total contribution to the cluster-entropy is

∆S
(6)
i,j,k = α

(6)
ijk (cij)

3 (cjk)
3 + α

(6)
jik (cij)

3 (cki)
3 + α

(6)
jki (cjk)

3 (cki)
3 (C5)

with

α
(6)
ijk =

(2pi − 1) (2pk − 1)

3 (pi)2 (1− pi)2 (pj)3 (1 − pj)3 (pk)2 (1 − pk)2
. (C6)

3. Generic case K ≥ 4

The above results for K = 3 are easily generalized to any value of the cluster size K ≥ 4. The diagrammatic
expansion of a K–spin cluster includes all circuits where pairs of spins are linked together. Each diagram with (one
or two) links between il and il+1 (l = 1, . . . ,K − 1) and (one or two) links between i1 and iK gives

∆S
(2K−1)
i1,...ik

=
(−1)K

2
∏K

l=1(pil)
2 (1− pil)

2

[

(2pik−1
− 1) (2pik − 1) (ci1,i2)

2(ci2,i3)
2 . . . (cik−2,ik−1

)2cik−1,ik

+ (2pik−2
− 1) (2pik−1

− 1) (ci1,i2)
2 (ci2,i3)

2 . . . cik−2,ik−1
(cik−1,ik)

2 + . . .

+ (2pi1 − 1) (2pi2 − 1) ci1,i2 (ci2,i3)
2 . . . (cik−2,ik−1

)2 (cik−1,ik)
2

]

. (C7)

At the next order in power of Mij , each diagram with three links between il and il+1 (l = 1, . . . ,K − 1) gives a
contribution

∆S
(3K−3)
i1,...ik

=
(−1)K−1 (2pi1 − 1) (2pik − 1)

3(pi1)
2 (1 − pi1)

2 (pik)
2 (1 − pik)

2
∏K−1

l=2 (pil)
3 (1 − pil)

3

K−1
∏

l=1

(cil,il+1
)3 . (C8)
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FIG. 34: Comparison of the numerical (x-axis) and theoretical (y-axis) values for the entropies of clusters (i, j) (a) and (i, j, k)
(b). The system is made of N = 40 independent spins, with the same pi as in the neural data of Ref. [2]; the average value of
the pi’s is p = 0.0238. Theoretical predictions correspond to (C3) and (C5). The number of sampled configurations is B = 106.

Appendix D: Critical correlation length ξc for the absolute convergence

In this Appendix, we briefly explain why the cluster-entropy series is absolutely convergent if and only if the
correlation length ξ is smaller than

ξc =
Ω

log v
. (D1)

Here, Ω = 2 when the reference entropy is S0 = 0, and Ω = 3 when S0 = SMF . Parameter v denotes the number of
neighbours of a site on the lattice, supposed to be uniform. For instance, v = 2D on a hypercubic lattice in dimension
D ≥ 1.
Consider a set of K distinct points on the lattice. Let N (L) be the number of closed paths of length L visiting all

K points. We obviously have N (L) ≤ vL. Hence, the series

∑

L

N (L) exp
(

− ΩL/ξ
)

(D2)

is convergent if ξ < ξc. Reciprocally, let L0 be the length of the shortest closed path C0 encircling the K points. A
closed path of length L1 + L0 can be built from C0 by attaching a closed loop of length L1 to any one of the sites in
C0. Hence, for L ≥ L0 + 2, N (L) ≥ L0 v

L−L0 . We deduce that the series (D2) is divergent if ξ > ξc.

Appendix E: Distribution of cluster-entropies for the Independent Spin model

We generate B configurations of N independent spins σi. Spin i is equal to 1 with probability p and to zero with
probability 1 − p (for simplicity we assume here that all the frequencies pi are equal to the same value p). The
empirical connected correlations cij computed from the B sampled configurations of spins are generally non zero. The
marginal distribution of cij is a normal law, with zero mean and standard deviation (49). The largest values of the
correlations are, for a system with N spins, of the order of

cMAX
ij = cB

√

4 logN , (E1)

according to extreme value theory.
We compare in Fig. 34 formulas (C3) and (C5) for, respectively, the cluster-entropies ∆Sij and ∆Sijk with numerics

carried out from randomly sampled configurations. Each pair (i, j) (Fig. 34(a)) and triplet (i, j, k) (Fig. 34(b)) define
a point, whose coordinates are the numerical and theoretical values of the entropy corresponding to the pair- or
triplet-cluster. The agreement, for B = 106 sampled configurations, is excellent due to the small value of cB ≃ 2 10−5.
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FIG. 35: Theoretical (red) and numerical (black) histograms HIS for the entropies ∆S of 2-spin clusters in a system of
independent spins and B = 106 configurations. Simulations were done with N = 40 spins, with heterogeneous pi ≃ .0238, see
caption of Fig. 34.

1. Distribution of cluster-entropies for K = 2

The distribution of the entropy of K = 2-clusters for a set of B = 106 configurations is shown in Fig. 35. To
derive the analytical expression of the distribution in the N → ∞ limit, we use the small-correlation formula (C1) for
∆S(1,2), and the fact that the distribution of the connected correlation is Gaussian. As a result, approximating α1,2

with its average value α obtained by substituting p1 and p2 with p in (C2), we obtain

HIS(∆S(1,2)) =
exp

(

− (∆S(1,2))
2/3

2 (cB)2α2/3

)

3α1/3
√

2π(cB)2 (∆S(1,2))2/3
(E2)

This distribution is a stretched exponential at infinity, and diverges in zero. Its standard deviation is

σ∆S(1,2)
=

√
15 α (cB)

3 =

√
15 (2p− 1)2

6 p(1− p)B3/2
(E3)

For B = 106 and p = 0.0238 we obtain that the standard deviation is ≃ 2.7 10−8. Distribution (E2) is compared to
the histogram obtains from numerics in Fig. 35. The standard deviation and the distribution at small entropies are
in good agreement. Large values of the correlations (E1) give rise to isolated values of ∆S(1,2), of the order of

∆SMAX
(1,2) ≃ (4 logN)3/2

(

〈(∆S(i,j))
2〉
)1/2

, (E4)

approximately equal to 1.2 10−6 for N = 40. This value is about twice the largest cluster-entropy observed in Fig. 35
for one particular realization of the sampled configurations.

2. Distribution of the cluster-entropies for K = 3

The leading order contribution to the entropy of a 3-cluster is given by (C3). We want to calculate the distribution
of ∆S(1,2,3) when the connected correlations cij are random Gaussian variables, of zero mean and variance (cB)

2.

We neglect the correlations between c12, c13, c23, which is legitimate for large B. Let us call x = ∆S(1,2,3)/(α(cB)
5),

with α given by (C4), and let P (x) be the probability density of x. Though we have not been able to find a closed
expression for P (x), the asymptotics behavior of P for large or small arguments can characterized analytically.
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a. Large x behaviour

The Mellin transform of P [36] is

∫ ∞

0

dxP (x)xλ =

(

2

π

)3/2 ∫ ∞

0

dc12 dc13 dc23 e−F (c12,c13,c23) (E5)

where

F (c12, c13, c23) = −1

2

(

c212 + c213 + c313) + λ log(c12c
2
13c

2
23 + c212c13c

2
23 + c212c

2
13c23) . (E6)

The tail of P (x) at large x can be studied by considering large values of λ. We expect the dominant contribution
to the multiple integral on the right hand side of (E5) to come from large correlations. The location of the main
contribution to the integral is the value of (c12, c13, c23) which maximizes F . As F is invariant under any permutation
of its arguments, we look for a maximum where c12 = c13 = c23 ≡ c∗. A straigthforward calculation shows that

c∗(λ) =

√

5

3
λ, F ∗(λ) =

5

2
λ logλ+ λ

(

log 3 +
5

2
log

5

3
− 5

2

)

. (E7)

We now use the saddle-point method again, this time to estimate the integral on the left hand side of (E5). We obtain

max
x

[

logP (x) + λ log x
]

= F ∗(λ) , (E8)

which is true when λ is very large. Hence, F ∗(λ) is the Legendre transform of logP (x). Solving (E8) gives

logP (x) ≃ −3

2

(x

3

)2/5

(E9)

at large x. The distribution of the cluster entropies ∆S(1,2,3) thus follows a stretched exponential with exponent 2
5 .

This decay is much slower than an exponential, and leads to large tails as can be seen from Fig. 9.

b. Small x behavior

In order for the rescaled entropy x to be small, at least one among the three correlations should be small according
to (C3). Without restriction, we may assume that c12 is the smallest of the three correlations. As c12 appears once
with power one, and twice with power two in (C3), we approximate x ≃ c12c

2
13c

2
23. The Mellin transform of P is, for

negative λ,

∫ ∞

0

dxP (x)xλ ≃ 3

(∫ ∞

0

dc
2√
2π

cλ e−c
2/2

) (∫ ∞

c

dc
2√
2π

c2λ e−c
2/2

)2

. (E10)

The largest pole is located in λ = − 1
2 , and is of order 2. According to standard results on the inversion of Mellin

transforms [36], we obtain a precise characterization of the divergence of the probability density at small x,

P (x) ≃ C
(− log x)√

x
, (E11)

where C is a constant.

c. Typical value of x

The typical value of the x is defined through

xtyp = exp

(∫ ∞

0

dxP (x) log x

)

. (E12)
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This quantity is less sensitive than the average value of x to the presence of the long tails in P (x) at large x. We
write x = (c12c13c23)

2 z where

z =
1

c12
+

1

c13
+

1

c23
. (E13)

Taking the logarithm, and averaging over the correlation, we obtain the following expression for the average value of
the logarithm of x,

〈log x〉 = 6

(∫ ∞

0

dc
2 log c√

2π
e−c

2/2

)

+ 〈log z〉z . (E14)

The integral over c in the above equation can be calculated numerically, with a value ≃ −.63518. To calculate the
average value of log z, we first use the identity

log z =

∫ ∞

0

du

u

(

e−u − e−u z
)

. (E15)

Taking the average on both sides, we have

〈log z〉z =

∫ ∞

0

du

u

(

e−u − 〈e−u z〉z
)

. (E16)

As z is a sum of independent random variables its Laplace transform is the product of their Laplace transforms,

〈e−u z〉z =

(
∫ ∞

0

dc
2√
2π

e−c
2/2−u/c

)3

=

(

λ

2π
√
2
G30

03

(

λ2

8

∣

∣

∣

∣

−
− 1

2 , 0, 0

))3

, (E17)

where G is the Meijer-G function. we have calculated the integral (E16) using the Mathematica software. Some care
must be taken for the numerical accuracy when z → 0. The outcome is 〈log z〉z ≃ 2.09643. Putting all contributions
together we obtain xtyp ≃ 0.18. The corresponding values of ∆S(1,2,3) are 3.5 × 10−15 for B = 106, and 1.1 × 10−12

for B = 105, in good agreement with the numerical value, respectively, 3× 10−15 and 9× 10−13.

d. Standard deviation of x

We can easily evaluate the variance of each of the three terms of the sum in (C3) as the product of the variances
of the three terms in the product, based on the approximation that the connected correlations cij are independent
stochastic variables. We obtain

σ∆Sijk
=

3
√
3(2p− 1)2 (cB)

5

2 p6 (1− p)6
=

3
√
3 (2 p− 1)2

2 p (1− p)B5/2
. (E18)

With the values of N and p chosen in Fig. 35, we find that the standard deviation is of the order of 10−13 for B = 106,
and 2 10−11 for B = 105, see Fig. 9.

3. Distribution of cluster-entropies for generic K ≥ 4

In general, for K ≥ 3, the leading contribution to ∆S(i1,i2,...iK) (C7) contains the sum of K × (K − 1)!/2 terms,
each one being the product of K random variables, among which (K − 1) are elevated to power two, and 1 is elevated
to power 1. The factor K comes from the fact that there are K way of choosing the single link in the circuits with K
spins. The factor (K − 1)!/2 is the number of non equivalent circuits going through K spins. We define the rescaled
entropy x through

x = |∆S(i1,i2,...iK)| ×
2 (p(1− p))2K

√

K!
2 (2p− 1)2 (cB)2K−1

(E19)
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The approach followed in Section E 2 to calculate the asymptotic behaviour of the probability density P of x for
K = 3 can be extended without difficulty to any value of K > 3. We find that P (x) diverges when x → 0, with

P (x) = C
(− log x)K−2√

x
. (E20)

where C is a constant. Hence the shape of the distribution of x is, up to logarithmic terms, independent of K. On
the contrary, the tail of the distribution for large x is very sensitive to K,

logP (x) ≃ − K

2(K − 1
2 )

2

( x

K

)2/(2K−1)

(E21)

As in the K = 3 case, the distribution of the cluster entropies ∆S follows a stretched exponential. The exponent of
the stretched exponential decreases with K. The variance of the distribution can be easily evaluated, with the result

σ∆S(i1,i2,...iK )
=

√

K!/2(
√
3)K−1(2p− 1)2 (cB)

2K−1

2(p (1− p))2K
. (E22)

Appendix F: Properties of the cluster-entropies of the one-dimensional Ising model

Consider the one-dimensional Ising model with nearest-neighbour couplings and periodic boundary conditions. The
Hamiltonian of the model is

H = −h
∑

i

σi − J
∑

i

σi σi+1 , (F1)

where the spins σi take 0,1 values. The parameters of the model are the N identical fields hi = h, the N couplings
Ji,i+1 = J between neighbours and the remaining N × (N − 3)/2 zero couplings Ji,j = 0 between non neighbours.
We recall a few elementary facts about the model. The transfer matrix is

T =

(

eJ+h eh/2

eh/2 1

)

. (F2)

The eigenvalues are λ± = 1
2

(

eJ+h + 1±
√

(eJ+h − 1)2 + 4 eh
)

, and the two components of the eigenvectors are,

respectively, v±(1) = −(1−λ±)/
√

eh + (1 − λ±)2 and v±(2) = eh/2/
√

eh + (1− λ±)2. The probability that a spin is
up is given by, in the N → ∞ limit,

p = 〈σi〉J =
(

v+(1)
)2

, (F3)

and the connected correlation at distance d is

ci,i+d = 〈σi σi+d〉J − 〈σi〉J〈σi+d〉J = p(1− p)

(

λ−
λ+

)d

= p(1 − p) exp(−d/ξ) , (F4)

where the correlation length is given by ξ = −1/ log(λ−/λ+).

1. Calculation of the cluster-entropies and cancellation property

In this Section, we show the exact cancellation property between the entropies of clusters with different sizes
discussed in Section III C 2. We will see that this property is a direct consequence of the existence of a unique
interaction path along the unidimensional chain.

a. Case S0 = 0

We first consider the case where the reference entropy is zero. Let Γ = (i1, i2, . . . , iK) be a cluster of size K, with
i1 < i2 < . . . < iK . Due to the unidimensional nature of the interactions, the Gibbs distribution over the K-spin
configurations σ obeys the chain rule,

PJ[σ] = PJ(σiK |σiK−1 ) . . . PJ(σi4 |σi3 )PJ(σi3 |σi2)PJ(σi2 , σi1 ) , (F5)
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where P (·, ·) and P (·|·) denote, respectively, joint and conditional probabilites. Inserting the above formula into
expression (9) for the cross-entropy, we obtain

SIsing(J|p) = −
∑

σ

Pobs[σ]

(K−1
∑

l=2

logPJ(σil+1
|σil) + logPJ(σi2 , σi1)

)

= −
∑

σ

Pobs[σ]

(K−1
∑

l=1

logPJ(σil+1
, σil)−

K−1
∑

l=2

logPJ(σil)

)

(F6)

=

K−1
∑

l=1

SIsing(h
→
il , h

←
il+1

, Jil,il+1
|pil , pil+1

, pil,il+1
)−

K−1
∑

l=2

SIsing(h
0
il |pil) .

Each variable σil , with l = 2, . . . ,K − 1, appears three times in (F6), which explains the presence of three fields h
with the same index il. After optimization over J = ({Jil,il+1

}, {h→il }, {h←il }, {h0
il
}) all these fields are equal, and we

obtain

S(p) =

K−1
∑

l=1

S(pil , pil+1
, pil,il+1

)−
K−1
∑

l=2

S(pil) =

K−1
∑

l=1

∆S(il,il+1)(p) +

K−1
∑

l=2

∆S(il)(p) . (F7)

Hence the cross-entroy S(p) is the sum of the 1-cluster entropies and of the entropies of the 2-clusters made of
adjacent sites. None of the other cluster-entropies appear, which proves that they cancel each other. To illustrate the
cancellation mechanism, consider the case K = 3. According to (F7),

S(p) = ∆S(i1,i2)(p) + ∆S(i2,i3)(p) + ∆S(i1)(p) + ∆S(i2)(p) + ∆S(i3)(p) . (F8)

Comparing with (28) we obtain

∆S(i1,i2,i3)(p) = −∆S(i1,i3)(p) , (F9)

which shows that the entropy of a 3-cluster and the one of a 2-cluster with the same extremities i1, i3 are opposite
to one another. By a recursive applications of (F7) this result can be immediately generalized to higher values of K.
The entropy of a K-cluster is simply the entropy of the 2-cluster with the same extremities, multiplied by (−1)K−2.
Hence, identity (44) is established.
According to formula (F4) for the connected correlation, the entropy of a two-site cluster is a function of the distance

d between the two sites:

∆S(i,i+d) = F
(

exp(−d/ξ)
)

, (F10)

where

F (u) = −2p(1− p)(1− u) log(1− u)− p
(

p+ (1− p)u
)

log
(

1 +
(1− p)u

p

)

− (1− p)
(

1− p+ p u
)

log
(

1 +
p u

1− p

)

. (F11)

To obtain the expression (F11) for F , we have used formula (26) for the 2-spin cluster-entropy, with p1 = p2 = p and
p12 = p2 + c12, where the correlation c12 is given by (F4). Note that F (u) = O(u2) for small u, in agreement with
scaling (41).

b. Case S0 = SMF

We now introduce the reference entropy S0 = SMF . The matrix M defined in (21) has elements

Mij =
cij

√

pi(1− pi)pj(1− pj)
= exp(−|i− j|/ξ) . (F12)

The inverse of M , G = M−1, is a tridiagonal matrix, whose non zero elements are

Gii =
1 + exp(−2/ξ)

1− exp(−2/ξ)
, Gi,i±1 = − exp(−1/ξ)

1− exp(−2/ξ)
. (F13)
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FIG. 36: Histograms of the entropies for clusters of size 2 (a) and 3 (b); in the latter case, entropies are negative. Data are
generated from the unidimensional Ising model (F1) with N = 30 spins, and parameters J = 4 and h = −6. Each peak is
labelled by the distance d between the extremities of the clusters. The reference entropy is S0 = SMF .

Consider now the Gaussian model over N real-values variables ϕi, whose energy function is given by

E[ϕ] =
1

2

∑

i,j

Gij ϕi ϕj . (F14)

For this Gaussian model, the logarithm of the partition function is (up an irrelevant additional constant), logZ[G] =
− 1

2 log detG. By construction, model (F14) is the solution of the inverse Gaussian problem, with data: 〈ϕi〉 =
0, 〈ϕi ϕj〉 = Mij . Hence, S0 can be interpreted as the cross-entropy of Gaussian model (F14) under those data. A
key feature of the Gaussian model above is that its interaction matrix Gij is tridiagonal. Only nearest neighbour
variables are coupled to each other according to (F13). We conclude that the Gaussian model is a one-dimensional
model. Consequently, it obeys a chain rule similar to (F5). This is the only requirement for the main conclusion of
Section F 1 a to hold: in the cluster expansion of S0, the entropy of a K–cluster is simply equal to the entropy of the
2-cluster with the same extremities, multiplied by (−1)K−2. As both the expansions of S and the one of S0 enjoy this
property, so does the expansion of S − S0.
We conclude this Section by the expression of the 2-cluster entropy ∆S(i,i+d). In the presence of the reference

entropy S0 = SMF , we substract the following contribution to expression (F10), see (21),

(∆S0

)

(i,i+d)
=

1

2
log det

(

1 Mi,i+d

Mi,i+d 1

)

. (F15)

Hence, function F (u) defined in (F11) should be substracted 1
2 log(1− u2). It is a simple check that F (u)− 1

2 log(1−
u2) = O(u3), in agreement with scaling (46).

2. Examples and calculation of diagrammatic coefficients

We now show the histograms of cluster-entropies for K = 2 and K = 3 for specific choices of J, h. The averages pi
and pij were calculated exactly through formulas (F3) and (F4) (perfect sampling). Figure 36(a) shows the histogram
of entropies for clusters of the type (i, i+ d). Entropy values are discrete and labelled by the distance d. They range
from 10−2 (for nearest neighbours, distance d = 1) to values smaller than 10−15 for 6 < d < 15. All entropies smaller
than the numerical accuracy ≃ 10−15 are put in the peak at the origin. Expanding F (u) to the lowest order in u (for
S0 = SMF ) we find the asymptotic formula for the 2-cluster entropy:

∆Si,i+d ≃ (2p− 1)2

6 p (1− p)
e−3 d/ξ , (F16)

in agreement with (C1). We have verified that this formula is in very good agreement with the numerics as soon as
d ≥ 4 for the parameters of Fig. 36.
Figure 36(b) show the histogram of the entropies of 3-clusters (i, j, k). Let d = k − i be the distance between the

extremities. We observe that the entropies are gathered into peaks, and are exactly the opposite of the ones found in
Fig. 36(a) as expected. Two differences are:
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• The peak in d = 1 is not present because the minimal distance between three spins is d = 2. The largest 3-spins
entropy thus corresponds to triplets of the type (i, i+ 1, i+ 2).

• The height of the peak (number of clusters) corresponding to distance d is (d − 1)N . The degeneracy (d − 1)
is the number of ways of choosing the location of site i2 in between i1 and i3.

We now show how the value of the cluster entropy can be found back from the leading terms in the diagrammatic
expansion calculated in Section C 2. Let us call d′ = j − i < d the distance between the first two sites in the cluster.
For each diagram in Fig. 33 we give in Table F 2 the sum of the distances of its links, i.e. the power of exp(−1/ξ).

diagram sum of distances

a) d+ 2d′ + 2(d− d′) = 3d

b) 2d+ 2d′ + (d− d′) = 3d+ d′

c) 2d+ d′ + 2(d− d′) = 4d− d′

d) 3d′ + 3(d− d′) = 3d

e) 3d+ 3d′

f) 3d+ 3(d− d′) = 6d− 3d′

Interestingly, the lowest total distances are found in diagrams a) and d), while the latter diagram is of a higher
power (6) in terms of the correlated function than the former (5). Hence, contrary to the case of independent spins
(Section E), diagrams a) and d) give the dominant contributions to the entropy. Summing the contributions of a)
and d) we find

∆S(i,j,k) = α
(5)
ijk (cij)

2 (cjk)
2 cki + α

(6)
ijk (cij)

3 (cjk)
3 =

(

α
(5)
ijk + α

(6)
ijk

)

(

p(1− p) exp(−1/ξ)
)3d

. (F17)

To derive the coefficients α(5) and α(6), we impose that ∆S(i,j,k) is the opposite of (F16). We deduce that α(5) and

α(6) are given by, respectively, (C4) and (C6).
The exact cancellation property discussed above has important consequences for the inferred fields and couplings.

Consider for instance the coupling Ji,i+2, which vanishes in the 1D-Ising model with nearest-neighbour interactions
(F1). As the connected correlation ci,i+2 is not equal to zero, a contribution to the coupling will be collected from
the cluster (i, i+ 2) itself, equal to

∆Ji,i+2;(i,i+2) = −∂∆S(i,i+2)

∂pi,i+2
. (F18)

Other contributions will come from larger clusters. For instance the cluster (i, i+ 1, i+ 2) will give an additional

∆Ji,i+2;(i,i+1,i+2) = −∂∆S(i,i+1,i+2)

∂pi,i+2
. (F19)

The sum of the two contributions above vanishes due to the cancellation property. It can be checked that the
contributions coming from all the other clusters vanish, too, which makes the coupling Ji,i+2 = 0 as it should.

Appendix G: Inverse susceptibility matrix for the unidimensional Ising model

Hereafter, we want to invert the matrix χ, whose elements are given in (61). The matrix is of dimension 1
2N(N−1),

and each element is labelled by two indices (i, j) and (k, l), with i < j and k < l. Each index (i, j) can be represented
by a site of coordinates i and j on the half-grid of Fig. 37(a). We now show that the non-zero entries of the
inverse susceptibility matrix,

(

χ−1
)

ij,kl
, are in one-to-one correspondence with the sites (i, j) and (k, l) that are

either identical, or nearest neighbours, or diagonally opposed on the elementary mesh of the half-grid (Fig. 37(b,c,d)).
Depending on the value of the difference j − i, the number of those sites is equal to 9, 8, or 6.
We start with the case j − i ≥ 3 (Fig. 37(b)). By symmetry, the nine unknown matrix elements

(

χ−1
)

ij,kl
take

only three independent values, denoted by γ for (k, l) = (i, j), β for (k, l) and (i, j) nearest neighbours, and α for
(k, l) = (i ± 1, j ± 1). We now write the matrix inversion identity,

∑

k<l

(

χ−1
)

ij,kl
χkl,mn = δi,m δj,n , (G1)
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FIG. 37: Half grid representing the index (i, j) of the entries of the inverse susceptibility matrix, with i < j (a). Black circles
locate the nearest-neighbours and the diagonally opposed sites (k, l) of (i, j) (cross), with i = 4 and j = 9 (b), 6 (c), 5 (d).

for various values of (m,n). Let d = j − i. For m = i, n = j, constraint (G1) gives

γ(1− x2d) + 2β
(

2x− x2d−1 − x2d+1
)

+ α
(

4x2 − x2d−2 − x2d − x2d+2
)

= 1 , (G2)

which should hold for all d ≥ 3. We deduce two coupled equations for the three unknown variables:

γ + 2
(

x+
1

x

)

β + 4
(

x+
1

x

)2

α = 0 , (G3)

γ + 4 xβ + 4 x2 α = 1 . (G4)

For m = i+ 1, n = j, constraint (G1) is equivalent to

γ(x− x2d−1) + β
(

1 + 3x2 − x2d−2 − 3x2d
)

+ α
(

2x+ 2x3 − x2d−3 − 2x2d−1 − x2d+1
)

= 0 . (G5)

The d-dependent term in the equation above cancels by virtue of (G3). We are left with an additional equation over
α, β, γ:

γ x+ β (1 + 3x2) + 2 x (1 + x2)α = 0 . (G6)

By symmetry of the matrices χ,χ−1, no new constraint is obtained when the values of m,n are further varied. Solving
(G3), (G4), (G6) we obtain

α =
x2

(1 − x2)2
, β = −x(1 + x2)

(1− x2)2
, γ =

(1 + x2)2

(1− x2)2
. (G7)

The analysis of the other cases j = i + 2 (Fig. 37(c)) and j = i + 1 (Fig. 37(d)) can be done along the same lines.
We do not write the calculations in details, and simply report the results. The case j = i + 2 is very similar to the
previous case. There are 8 coefficients to be calculated, with three independent values, α′, β′, γ′. It turns out that

α′ = α , β′ = β , γ′ = γ . (G8)

As for the last case, j = i+1, we call α′′ the values of the entries of χ−1 with (k, l) = (i−1, j−1), (i−1, j+1), (i+1, j+1),
β′′ the values of the entries with (k, l) = (i−1, j), (i, j+1), and γ′′ the diagonal element corresponding to (k, l) = (i, j).
After some elementary algebra, we find

α′′ = α , β′′ = β , γ′′ =
1 + x2 + x4

(1− x2)2
. (G9)

All those results are reported in (62).
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