We present a procedure to solve the inverse Ising problem, that is to find
the interactions between a set of binary variables from the measure of their
equilibrium correlations. The method consists in constructing and selecting
specific clusters of variables, based on their contributions to the
cross-entropy of the Ising model. Small contributions are discarded to avoid
overfitting and to make the computation tractable. The properties of the
cluster expansion and its performances on synthetic data are studied. To make
the implementation easier we give the pseudo-code of the algorithm.Comment: Paper submitted to Journal of Statistical Physic