350 research outputs found

    The surprising implications of familial association in disease risk

    Full text link
    Background: A wide range of diseases show some degree of clustering in families; family history is therefore an important aspect for clinicians when making risk predictions. Familial aggregation is often quantified in terms of a familial relative risk (FRR), and although at first glance this measure may seem simple and intuitive as an average risk prediction, its implications are not straightforward. Methods: We use two statistical models for the distribution of disease risk in a population: a dichotomous risk model that gives an intuitive understanding of the implication of a given FRR, and a continuous risk model that facilitates a more detailed computation of the inequalities in disease risk. Published estimates of FRRs are used to produce Lorenz curves and Gini indices that quantifies the inequalities in risk for a range of diseases. Results: We demonstrate that even a moderate familial association in disease risk implies a very large difference in risk between individuals in the population. We give examples of diseases for which this is likely to be true, and we further demonstrate the relationship between the point estimates of FRRs and the distribution of risk in the population. Conclusions: The variation in risk for several severe diseases may be larger than the variation in income in many countries. The implications of familial risk estimates should be recognized by epidemiologists and clinicians.Comment: 17 pages, 5 figure

    Does Cox analysis of a randomized survival study yield a causal treatment effect?

    Get PDF
    The final publication (Aalen, Odd O., Richard J. Cook, and Kjetil Røysland. Does Cox analysis of a randomized survival study yield a causal treatment effect?. Lifetime Data Analysis 21(4) (2015): 579-593. DOI: 10.1007/s10985-015-9335-y) is available at http://link.springer.com/article/10.1007/s10985-015-9335-yStatistical methods for survival analysis play a central role in the assessment of treatment effects in randomized clinical trials in cardiovascular disease, cancer, and many other fields. The most common approach to analysis involves fitting a Cox regression model including a treatment indicator, and basing inference on the large sample properties of the regression coefficient estimator. Despite the fact that treatment assignment is randomized, the hazard ratio is not a quantity which admits a causal interpretation in the case of unmodelled heterogeneity. This problem arises because the risk sets beyond the first event time are comprised of the subset of individuals who have not previously failed. The balance in the distribution of potential confounders between treatment arms is lost by this implicit conditioning, whether or not censoring is present. Thus while the Cox model may be used as a basis for valid tests of the null hypotheses of no treatment effect if robust variance estimates are used, modeling frameworks more compatible with causal reasoning may be preferable in general for estimation.Canadian Institutes for Health Research (FRN 13887); Canada Research Chair (Tier 1) – CIHR funded (950-226626

    Likelihood for generally coarsened observations from multi-state or counting process models

    Get PDF
    We consider first the mixed discrete-continuous scheme of observation in multistate models; this is a classical pattern in epidemiology because very often clinical status is assessed at discrete visit times while times of death or other events are observed exactly. A heuristic likelihood can be written for such models, at least for Markov models; however, a formal proof is not easy and has not been given yet. We present a general class of possibly non-Markov multistate models which can be represented naturally as multivariate counting processes. We give a rigorous derivation of the likelihood based on applying Jacod's formula for the full likelihood and taking conditional expectation for the observed likelihood. A local description of the likelihood allows us to extend the result to a more general coarsening observation scheme proposed by Commenges & G\'egout-Petit. The approach is illustrated by considering models for dementia, institutionalization and death

    Frailty modeling of bimodal age-incidence curves of nasopharyngeal carcinoma in low-risk populations

    Get PDF
    The incidence of nasopharyngeal carcinoma (NPC) varies widely according to age at diagnosis, geographic location, and ethnic background. On a global scale, NPC incidence is common among specific populations primarily living in southern and eastern Asia and northern Africa, but in most areas, including almost all western countries, it remains a relatively uncommon malignancy. Specific to these low-risk populations is a general observation of possible bimodality in the observed age-incidence curves. We have developed a multiplicative frailty model that allows for the demonstrated points of inflection at ages 15–24 and 65–74. The bimodal frailty model has 2 independent compound Poisson-distributed frailties and gives a significant improvement in fit over a unimodal frailty model. Applying the model to population-based cancer registry data worldwide, 2 biologically relevant estimates are derived, namely the proportion of susceptible individuals and the number of genetic and epigenetic events required for the tumor to develop. The results are critically compared and discussed in the context of existing knowledge of the epidemiology and pathogenesis of NPC

    A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models

    Get PDF
    Multi-state models are increasingly being used to model complex epidemiological and clinical outcomes over time. It is common to assume that the models are Markov, but the assumption can often be unrealistic. The Markov assumption is seldomly checked and violations can lead to biased estimation for many parameters of interest. As argued by Datta and Satten (2001), the Aalen-Johansen estimator of occupation probabilities is consistent also in the non-Markov case. Putter and Spitoni (2018) exploit this fact to construct a consistent estimator of state transition probabilities, the landmark Aalen-Johansen estimator, which does not rely on the Markov assumption. A disadvantage of landmarking is data reduction, leading to a loss of power. This is problematic for less traveled transitions, and undesirable when such transitions indeed exhibit Markov behaviour. Using a framework of partially non-Markov multi-state models we suggest a hybrid landmark Aalen-Johansen estimator for transition probabilities. The proposed estimator is a compromise between regular Aalen-Johansen and landmark estimation, using transition specific landmarking, and can drastically improve statistical power. The methods are compared in a simulation study and in a real data application modelling individual transitions between states of sick leave, disability, education, work and unemployment. In the application, a birth cohort of 184951 Norwegian men are followed for 14 years from the year they turn 21, using data from national registries

    Correlated multistate models for multiple processes: an application to renal disease progression in systemic lupus erythematosus.

    Get PDF
    Bidirectional changes over time in the estimated glomerular filtration rate and in urine protein content are of interest for the treatment and management of patients with lupus nephritis. Although these processes may be modelled by separate multistate models, the processes are likely to be correlated within patients. Motivated by the lupus nephritis application, we develop a new multistate modelling framework where subject-specific random effects are introduced to account for the correlations both between the processes and within patients over time. Models are fitted by using bespoke code in standard statistical software. A variety of forms for the random effects are introduced and evaluated by using the data from the Systemic Lupus International Collaborating Clinics
    corecore