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Abstract
Multi-state models are increasingly being used tomodel complex epidemiological and
clinical outcomes over time. It is common to assume that the models are Markov, but
the assumption can often be unrealistic. The Markov assumption is seldomly checked
and violations can lead to biased estimation of many parameters of interest. This is
a well known problem for the standard Aalen-Johansen estimator of transition prob-
abilities and several alternative estimators, not relying on the Markov assumption,
have been suggested. A particularly simple approach known as landmarking have
resulted in the Landmark-Aalen-Johansen estimator. Since landmarking is a strati-
fication method a disadvantage of landmarking is data reduction, leading to a loss
of power. This is problematic for “less traveled” transitions, and undesirable when
such transitions indeed exhibit Markov behaviour. Introducing the concept of partially
non-Markov multi-state models, we suggest a hybrid landmark Aalen-Johansen esti-
mator for transition probabilities. We also show how non-Markov transitions can be
identified using a testing procedure. The proposed estimator is a compromise between
regular Aalen-Johansen and landmark estimation, using transition specific landmark-
ing, and can drastically improve statistical power.We show that the proposed estimator
is consistent, but that the traditional variance estimator can underestimate the variance
of both the hybrid and landmark estimator. Bootstrapping is therefore recommended.
The methods are compared in a simulation study and in a real data application using
registry data to model individual transitions for a birth cohort of 184 951 Norwegian
men between states of sick leave, disability, education, work and unemployment.
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1 Introduction

Multi-state models are increasingly being used tomodel complex epidemiological and
clinical outcomes over time. One example is in the analysis of long-term sick leave and
health related absence from work, where detailed longitudinal data on individuals are
available through administrative registries (see e.g. Hoff et al. 2018). Multi-state mod-
els extend traditional hazard based time-to-event models to situations with a higher,
finite, number of states, each of which defines a possible competing risks situation
(Hougaard 1999; Andersen andKeiding 2002; Putter et al. 2007;Meira-Machado et al.
2008). In such models, the main parameters of interest are typically not the transition
hazards, but rather the overall occupation and transition probabilities between states
over time. In a Markov multi-state model, occupation and transition probabilities can
be estimated consistently as a plug-in estimate based on the estimated transition inten-
sities using the Aalen-Johansen (AJ) estimator (see Aalen et al. (2008)). However, for
non-Markov models, the AJ estimator is only consistent for occupation probabilities
(Datta and Satten 2001; Glidden 2002; Overgaard 2019; Nießl et al. 2020).

Several methods have been proposed for estimating transition probabilities in gen-
eral semi- and non-Markovmulti-state models based on subsampling (de Uña-Álvarez
andMeira-Machado 2015;Allignol et al. 2014; Titman 2015; Putter and Spitoni 2018).
They differ in that they are valid for models of different level of complexity. For exam-
ple, the models of Titman (2015) and Putter and Spitoni (2018) are valid for general
multi-state models, while the model of de Uña-Álvarez and Meira-Machado (2015)
can be used for progressivemulti-statemodels. The landmarkAalen-Johansen (LMAJ)
method of Putter and Spitoni (2018) is based on analysing a subset of the population
being in a specific state at a specific time point. This reference time and state is referred
to as a landmark. Applying the AJ estimator to this landmark subset gives consistent
estimates of transition probabilities from the landmark state at the landmark time, also
for non-Markov models. A consequence of stratification to a landmark sample is that
these subsets may become small, leading to increased variance and possibly unreliable
point estimates. In this paper we suggest an alternative approach, the hybrid landmark
Aalen-Johansen (HAJ) estimator, for models consisting of Markov and non-Markov
transitions. We show that the proposed estimator is consistent, but that the traditional
variance estimator can underestimate the variance. We therefore recommend using
bootstrapping. The proposed hybrid estimator is based on a transition wise consid-
eration of whether to use data from the landmark subsample or all available data in
the estimation procedure. Inspired by Titman and Putter (2020) a type of two-sample
test is suggested to select which transitions that are Markov (or close to Markov) and
which are not. The resulting HAJ estimator can be seen as a compromise between
the two extremes of either assuming all transitions are Markov or no transitions are
Markov. As our results demonstrate, the HAJ estimator will, typically, have less bias
than the AJ estimator and higher precision than the LMAJ estimator.
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Fig. 1 An illness-death model
with recovery, where, for
example, state 1 corresponds to
employment, state 2 to sick
leave and state 3 to permanent
disability

The outline for the paper is as follows. In Sect. 2 we define partially non-Markov
multi-state processes and present the HAJ estimator. In Sect. 3 we give a heuristic
justification of the estimator, discuss large sample properties and how tests of Markov
behaviour following Titman and Putter (2020) can be used to construct the HAJ esti-
mator. In Sect. 4 we consider a simulation study comparing the HAJ estimator to the
AJ and LMAJ estimators. In Sect. 5 we apply the techniques to data from a Norwegian
birth cohort to model sickness absence and work participation over time. A discussion
is found in Sect. 6. R code for implementation and reproduction of the simulation
study is available on GitHub (see Supporting Information).

2 A hybrid landmark Aalen-Johansen estimator

Let us consider a multi-state model X(t) over a bounded time interval [0, τ ], taking
values in the state space K = {1, . . . , K }. Let E ⊂ K × K be the set of possible
transitions of X . An example of such a multi-state model, X(t), is the illness-death
model with recovery, as illustrated in Fig. 1. This model consists of three states, say
employment, sick leave andpermanent disability, and four possible transitions between
them. Note, however, that what follows hold for any multi-state model with a finite
state space.

Say that for a given state l ∈ K, we are interested in the transition probabilities
from l to each of the states in K, given by (for s ≤ t)

Pl(s, t) := (Pl1(s, t). . . . , PlK (s, t))� , (1)

where Plk(s, t) := P(X(t) = k | X(s) = l) and k ∈ {1, . . . , K }. For example, for the
model in Fig. 1, P21(s, t) is the probability of being in work at time t , given sick leave
at time s. The problem of interest is now to produce a consistent estimator of (1). For
the sake of simplicity we consider the case without censoring. Censoring will briefly
be discussed in section 3.3.

Note that the theory that follows is valid also for more than one landmark state l,
so that l in practice can be a set of states. However, to ease notation, we focus on the
most common scenario where l is one particular state in the state space K.

2.1 The Aalen-Johansen estimator

When the multi-state process is Markov, a consistent estimator of these transition
probabilities is provided by the Aalen-Johansen estimator (see Aalen and Johansen
1978). For this, consider n i.i.d. realisations Xi (t) of X(t), where for subject i we
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740 N. Maltzahn et al.

define the at risk process for state j as Y (i)
j (t) = 1{Xi (t−) = j} and the transition

counting process for transition j → k ∈ E as N (i)
jk (s, t) = ∑

u∈(s,t] 1{Xi (u−) =
j, Xi (u) = k}. We assume that all transition counting processes are locally finite i.e.
at most a finite number of transitions happens on bounded intervals, hence justifying
the summation index for the counting process just defined. Then, the aggregated at
risk process

Y j (t) :=
n∑

i=1

1{Xi (t−) = j}

corresponds to the number of individuals in state j just before time t , and the transition
counting processes

N jk(t) :=
n∑

i=1

∑

u∈(s,t]
1{Xi (u−) = j, Xi (u) = k},

corresponds to the number of transitions directly from state j to state k in the interval
(s, t]. Let Y(t) := (Y 1(t), . . . ,Y K (t)) and Y •(t) = ∑K

j=1 Y j (t) be the total number

of subjects at risk at time t . For J j (t) := 1{Y j (t) > 0} let

Λ̂ jk(t) :=
∫ t

s

J j (u)dN jk(u)

Y j (u)
(2)

be the Nelson-Aalen estimator of the transition rates and �̂(t) a K × K matrix
with ( j, k)th element ( j �= k) equal to Λ̂ jk(t) and diagonal elements Λ̂ j j (t) =
−∑

k �= j Λ̂ jk(t). The Aalen-Johansen (AJ) estimator of the transition probability
matrix P(s, t), with elements Pjk(s, t), is then given by

P̂AJ(s, t) :=
∏

u∈(s,t]

(
I + Δ�̂(u)

)

where the product is ordered according to the time ordering and consist of a finite
number of terms due to the locally finite behaviour of the counting processes. Estimated
state occupation probabilities at time t may be obtained by

π̂AJ(t) = π̂(0)̂PAJ(0, t), (3)

where π̂(0) is the row vector of empirical state occupation probabilities at t = 0, given
by π̂ j (0) := Y j (0+)/Y •(0+). Here, the + in (t+) means that the numbers observed
to be in state j at time t , rather than just before time t are to be taken. Datta and Satten
(2001) argued that the estimated state occupation probabilities in (3) are consistent,
even if the multi-state model is non-Markov. The Aalen-Johansen (AJ) estimator of
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the transition probabilities Pl(s, t) from (1) is then given by

P̂AJ
l (s, t) := el

∏

u∈(s,t]

(
I + Δ�̂(u)

)
,

where el is a vector with the lth element equal to 1, and all other elements 0.

2.2 The landmark Aalen-Johansen estimator

Building on the results ofDatta andSatten (2001), Putter andSpitoni (2018) defined the
landmarkAalen-Johansen (LMAJ) estimator of transition probabilities. This estimator
uses the landmark population {i : Xi (s) = l} for estimation of the transition intensities.
In what follows we consider the landmark time s and landmark state l, on which
we condition, as fixed. Suppressing the dependence on s and l in the notation, we
defining the landmark counting process and at risk process as Y (i,LM)

j (t) := 1{Xi (s) =
l}Y (i)

j (t) and N (i,LM)
jk (t) := 1{Xi (s) = l}N (i)

jk (s, t). We define the aggregated at risk
and counting processes based on the landmark population as

Y
(LM)

j (t) :=
n∑

i=1

Y (i,LM)
j (t) and N

(LM)

jk (t) :=
n∑

i=1

N (i,LM)
jk (s, t).

Let Y
(LM)

(t) := (Y
(LM)

1 (t), . . . ,Y
(LM)

K (t)) and Y
(LM)

• (t) := ∑K
j=1 Y

(LM)

j (t).

For J (LM)
j (t) := 1{Y (LM)

j (t) > 0} define the landmark Nelson-Aalen estimator of
the transition rates as

Λ̂
(LM)
jk (t) :=

∫ t

s

J (LM)
j (u)dN

(LM)

jk (u)

Y
(LM)

j (u)
, (4)

and let �̂
(LM)

(t) be the matrix with ( j, k)th element Λ̂
(LM)
jk (t) and diagonal element

Λ̂
(LM)
j j (t) = −∑

k �= j Λ̂
(LM)
jk (t). Then the landmarkAalen-Johansen (LMAJ) estimator

of (1) presented by Putter and Spitoni (2018) is given by

P̂LMAJ
l (s, t) := el

∏

u∈(s,t]

(
I + Δ�̂

(LM)
(u)

)
.

2.3 The hybrid landmark Aalen-Johansen estimator

An undesirable feature of landmark subsampling is a reduction of the number of
individuals at risk used for estimation. As defined, the subsample reduce the at risk set
for all transitions, includingMarkov transitions if such exist. An easyway of improving
the estimation is by plugging inNelson-Aalen estimates based on the landmark sample
in theAalen-Johansen (AJ) estimator only for transitionswhere the difference between
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the landmarkNelson-Aalen estimate and the full sampleNelson-Aalen estimates differ
substantially. This is the main idea behind what we will refer to as the hybrid Aalen-
Johansen (HAJ) estimator. We are therefore in particular interested in methods for
detecting and deciding when differences in the hazard estimates are large enough to
prefer the landmark estimate. In Section 3.2 we describe how a simple two-sample
testing procedure can be used to identify the set of such non-Markov transitions.
If this is only a subset of the full set of transitions E , we refer to the multi-state
processes as partially non-Markov and denote the set of non-Markov transitions as
A ⊂ E .More formally partially non-Markovmeans that a subset of transitions satisfies
E[dN jk |Ft−,Y j (t) = 1] = E[dN jk |Y j (t) = 1], where F is the natural filtration of
X . The HAJ estimator is a plug-in estimator of a transition rate estimator where rates
are estimated as:

Λ̂
(H)
jk (t) :=

{
Λ̂ jk(t), jk /∈ A;
Λ̂

(LM)
jk (t), jk ∈ A.

(5)

Define �̂
(H)

(t) to be the matrix with ( j, k)th element Λ̂
(H)
jk (t) and diagonal element

Λ̂
(H)
j j (t) = −∑

k �= j Λ̂
(H)
jk (t). Now, the HAJ estimator of (1) is

P̂HAJ
l (s, t) := el

∏

u∈(s,t]
(I + Δ�̂

(H)
(u)).

Observe that for A = ∅ we get the classical AJ estimator, while for A = E we
get the LMAJ estimator. Suppose that only a subset of transitions satisfy the Markov
property above, and we wish to form the HAJ estimator. This can be done by applying
the standard AJ estimator to a particular subset. More specifically such a subset is
obtained by removing individuals that are not in the landmark state at the landmark
time point from the specific risk sets used for estimating intensities for the non-Markov
transitions. Applying the AJ estimator to such a reduced dataset from the landmark
time point and onward will produce the HAJ estimate. As already mentioned, the
LMAJ estimator is expensive;meaning that data reduction reduces precision (increases
variance). The HAJ estimator will guarantee equal or better precision (relative to the
LMAJ estimator), at the possible expense of introducing bias. In Sect. 4 we will study
how these opposing effects balance out.

3 Justification of the HAJ estimator

Our main reason for introducing the Hybrid estimator is to improve on the bias -
variance trade off when estimating transition probabilities compared to the use of AJ
or the LMAJ estimator. Before we turn to the HAJ estimator, we consider the basic
estimation problem of estimating transition probabilities and how it changes as we
move from the Markov to the non Markov case and from the AJ estimator to the
LMAJ estimator.
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3.1 Product limits and transition probabilities

Estimation of transition probabilities in multi-state models relies on a special relation
between conditional probabilities and cumulative hazard rate functions. The relation
is the multi-state version of the argument for the Kaplan-Meier estimator in classical
time-to-event models. For Markov multi-state models the result is due to Gill and
Johansen (1990) and says that ifP(s, t) is the transition probability matrix of aMarkov
multi-state model and � the cumulative hazard rate matrix, then we have

P(s, t) = lim
M∏

m=1

P(tm−1, tm) = lim
M∏

m=1

(I + �(tm) − �(tm−1)) , (6)

where the limits are taken over refinements of (s, t], and s = t0 < t1 < · · · < tM = t .
As a consequence, the product integral, when considered as a functional

� → �
u∈(s,t]

(I + d�(u)), (7)

is a convenient construct for producing plug-in estimators of probabilities in multi-
state models based on estimators of the cumulative hazard rate matrix. In the Markov
case Duhamel’s equation (see e.g. Andersen et al. (1993, Chapter 2)) and smoothness
properties of (7) can be used to establish consistency and large sample properties
either through Martingale methods (see e.g. Andersen et al. (1993, p. 320)) or through
the continuous mapping theorem and the functional delta method. These results rely
almost entirely on the properties of (7). Hence if, in the non-Markov case, one can
establish (6), or rather a suitably modified version of (6), then there is good reason to
believe that consistency and large sample behavior follow as well. We shall first argue
heuristically that such a suitable modification of (6) exists in the non-Markov case
and as in the Markov case there are two ways of deriving this result. In the Markov
case, Gill and Johansen (1990) derived (6) directly by considering limit behaviour of
the two products considered in (6). An alternative proof of (6) in the Markov case is
due to Aalen et al. (2001), and alternatively by Andersen et al. (1993, p. 296), using
what we shall refer to as a book keeping argument.

We shall first consider the direct approach and here we will rely entirely on the
results of Overgaard (2019) (who derives the results for state occupation probabili-
ties) and simply claim that the same arguments carry over. The one line argument is
that “transition probabilities are occupation probabilities whenwe stratify to the condi-
tioning event” (i.e. for the landmark data). Consider a fixed landmark time point s and

landmark state l and define PLM(t, u) =
(
PLM
jk (t, u)

)
to be the matrix of transition

probabilities in the landmark population, with

PLM
jk (t, u) := P(X(u) = k | X(t) = j, X(s) = l).
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By construction, and regardless of the Markov assumption, we have for s ≤ t

Pl(s, t) = elPLM(t0, t1) · · ·PLM(tM−1, tM ), (8)

for s = t0 < t1 < · · · < tM = t . For a sufficiently fine partition of the interval
(s, t] consider the approximation PLM(tl−1, tl) ≈ I +�(LM)(tl)−�(LM)(tl−1) where
Λ

(LM)
jk (dt) is the transition rate of the landmark population, i.e.

Λ
(LM)
jk (dt) = E

[
dN (LM)

jk (t) | Y (LM)
1 j (t) = 1

]
.

The desired result is then to achieve the equality

lim
M∏

m=1

PLM(tm−1, tm) = lim
M∏

m=1

(
I + �(LM)(tm) − �(LM)(tm−1)

)
, (9)

where the limits are taken over refinements of (s, t]. A detailed argument for this will
take us too far astray and we will instead refer to Overgaard (2019) Theorem 2 and
Theorem 5. Now we turn to the book keeping argument.

Assuming no censoring one can, as pointed out by Aalen et al. (2001) and alter-
natively by Andersen et al. (1993, p. 296), derive the landmark estimator of Pl(s, t)
pointwise for (s,t) from a bookkeeping argument, which establishes an empirical ver-
sion of (8). In order to do so let us briefly define

P̂(LM)(s, t) :=
∏

u∈(s,t]
(I + Δ�̂

(LM)
(u)).

A natural way of estimating the transition probabilities Pl(s, t) for specific time points

s and t is to consider the fraction of empirical meansY
(LM)

(t)/Y
(LM)

• (s). The number

of individuals from the landmark sample in state j just after time s, Y
(LM)

j (s + Δt),
may be expressed as those who were in state j at time s plus the net arrivals in the
small time frame Δt . That is

Y
(LM)

j (s + Δt) = Y
(LM)

j (s) +
∑

k �= j

(N
(LM)

k j (s + Δt) − N
(LM)

k j (s))

−
∑

k �= j

(N
(LM)

jk (s + Δt) − N
(LM)

jk (s))

→ Y
(LM)

(s)[I + Δ�̂
(LM)

(s+)] j

for Δt → 0, where [I+ Δ�̂
(LM)

(s+)] j denotes the j th column of I + Δ�̂
(LM)

(s+).
From this observation one obtains the following algebraic relation

Y
(LM)

(t)

Y
(LM)

• (s)
= Y

(LM)
(s)P̂(LM)(s, t)

Y
(LM)

• (s)
= el P̂(LM)(s, t). (10)
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We may recognize the right hand side as a continuous functional of the Nelson-
Aalen transition ratematrix based on the landmark data. Hence consistencywill follow
from convergence of the left hand side to the desired transition probability, consistency
of the rate matrix estimator and the continuous mapping theorem. The only difficulty
here is the consistencyof the ratematrix. For thatwe refer to appendixAor alternatively
Nießl et al. (2020).

3.2 The HAJ estimator

If X1, X2, . . . are partially non-Markov, then there is potential gain in terms of power
and variance when using the HAJ estimator. Note that

E
[
dN (LM)

jk (t) | Y (LM)
j (t) = 1

]
= E

[
dN jk(t) | Y j (t) = 1, X(s) = l

]
, (11)

which for Markov transitions ( jk) ∈ A implies that dΛ(LM)
jk (t) = dΛ jk(t). Likewise

if we let u → �(H)(u) be the hybrid cumulative hazard rate matrix based on Λ jk for

( jk) ∈ A and Λ
(LM)
jk , for ( jk) ∈ AC , we have �(LM) = �(H). Thus, when (9) holds,

the same holds in the partially non-Markov setting using �(H) and consistency of the
HAJ estimator follows by continuity of (7).

As pointed out by Titman and Putter (2020), from (11) it is clear that a test of the
Markov assumption for a specific jump transition process from state j to state k can
be obtained by comparing intensities based on disjoint landmark states. One can use
a two-sample test of the hypothesis

H0 : E [
dN jk(t) | Y j (t) = 1, X(s) = l1

]

= E
[
dN jk(t) | Y j (t) = 1, X(s) = l2

]
on (s, τ ].

Note that the two disjoint landmark states ensure independence between samples in the
estimation procedure. Typically, l1 would be the landmark state of main interest and
l2 the set of all other remaining possible states. In the application and the simulation
study we use two different tests as selection criteria for determining Markov and
non-Markov behaviour for specific transitions. Denote the log-rank test statistic for
transition j → k from landmark time point s by Xs . This test statistic is the basis
for a test referred to as the point test. Since the above test statistic is dependent on
s, Titman and Putter (2020) suggest a more global test of the Markov assumption
for transition j → k based on X := maxi Xsi , over a suitable grid s1, . . . , sk . We
refer to this as the grid test. For further discussion of the use of two sample tests to
identify non-Markov transition see Online Resource C. We also stress that these tests
are considered primarily as diagnostic tools and we do not address issues related to
multiple testing.

123



746 N. Maltzahn et al.

3.3 Censoring, covariates and variance

For simplicity, we have so far not considered censoring. Censoring is not used in the
simulation experiment and is not a major issue in the practical application. In time-to-
event analysis censoring is generally the rule rather than the exception and a comment
on the matter is appropriate. First of all, in the setting of multi-state models, stronger
censoring assumptions are typically needed, compared to the regular survival setting
(see e.g. Aalen et al. (2008, p. 123)). Overgaard (2019) derives the result (6), which
would extend to (9), based on a form of independent censoring coined “the status inde-
pendent observation assumption” and Glidden (2002) considers right censoring with
strong independence assumptions requiring censoring to be independent of states. A
similar independent censoring assumption is needed for the LMAJ and HAJ estima-
tors, as discussed by Putter and Spitoni (2018). For dependent censoring, Datta and
Satten (2002) consider an IPCWversion of the AJ estimator of state occupation proba-
bilities. This weighted estimator was empirically investigated by Gunnes et al. (2007)
and showed reasonable results for non-Markov behaviour induced by a joint frailty
at baseline and various dependent censoring regimes. If present, dependent censoring
can affect selection into the landmark sample, and a similar IPCW version of LMAJ
or HAJ should be considered.

We have not considered covariate based hazard rate models in our formal treatment
of the HAJ estimator but the results are expected to generalize to classical covariate
models e.g. Cox or additive hazard regression due to the smoothness property of (7).
See e.g. Hoff et al. (2019) for a discussion of covariate based models for the transition
rates in relation to the LMAJ estimator.

Regarding variance estimates for the LMAJ and HAJ estimator we recommend
bootstrapping. The LMAJ and HAJ estimator are constructed by applying the AJ
estimator to different subsets of the entire data set. Non-parametric bootstrap estimates
of the variance and point wise 95 percentile intervals can be obtained in the following
way: First perform random re-sampling of subjects with replacements, then obtain
estimates of transition probabilities (AJ, LMAJ andHAJ) by applying theAJ estimator
to the different subsets of each of the the bootstrap samples. Variance and percentile
estimates can then be obtained by pointwise sample variance estimates and pointwise
sample percentile estimates. Since we use a test statistic to create the Hybrid estimator
a natural question is whether to base the test on the original sample or to apply it to each
bootstrap sample. In the practical application the tests are based on the original sample.
Manyof the classical variance estimators for theAJ estimator rely on the transition rates
not depending on the history of the multi-state process. This is true under the Markov
assumption but if we relax the Markov assumption additional variation is introduced
for theNelson-Aalen estimator (See appendixA for a formal discussion) and in turn for
the plug-in estimator of transition probabilities. In the first simulation experiment we
study the empirical coverage of the Greenwood type estimator of confidence intervals
and in the practical application we compare such confidence intervals to bootstrapped
confidence intervals. The results are included in Online Resource A.2 and B.2. The
results suggest onlyminor deviations of theGreenwood type estimator, but it is unclear
whether this holds in general.
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4 A simulation study

A central feature of our motivating data application on sickness absence and work
participation is recurrent periods of sick leave. Since previous individual health his-
tory is very likely to impact future events of sick leave, we expect to see non-Markov
behaviour for various transitions in our model. Furthermore, we expect a considerable
amount of individual heterogeneity in a number of transitions due to for example vari-
ations in socioeconomic status, educational and professional backgrounds. Motivated
by these problems we will focus on a multi-state simulation experiment with recurrent
events and transition intensities subject to frailty effects. The smallest relevant multi-
state model for such an investigation is the illness-death model with recovery depicted
in Fig. 1. However, the appropriate analogy to our application will not be illness and
death. Rather we will think of state 1 as employed, state 2 as on sick leave and state 3
as permanent disability.

We consider two types of experiments using non-Markov models over the time
interval [0, τ ], with τ = 1000. In both experiments the intensities of the transition
counting processes are given by

λ jk = Vjkα jk, for jk ∈ {(1, 2), (1, 3), (2, 1), (2, 3)},

where (α12, α13, α21, α23) = (0.12, 0.03, 0.15, 0.1) and Vjk are individual frailties.
The simulation experiments were performed 1000 times and each experiment had a
total sample size of 1000 individuals. As the model is given conditional on the frailty,
an extra step is needed to obtain the “true”, unconditional transition probabilities.
They were calculated from a separate simulation experiment as the mean over 1000
repetitions of the LMAJ estimator applied to each simulated experiment, each ofwhich
also with a sample size of 1000 individuals. Note however that the LMAJ estimates
here are based on landmark subsamples which will have somewhat lower sample
size than the total sample size of 1000. The asymptotic distribution of the point and
grid tests is approximated from wild bootstrapping (see Titman and Putter (2020) for
further detail) and based on 500 bootstrap samples using standardized compensated
Poisson processes. The HAJ estimator is constructed using the grid test (see section
3.2) applied to all transitions. The landmark states used to create the two independent
samples are state 1 and state 2. We hope to find that the HAJ estimator is a useful
intermediary between the AJ and the LMAJ estimator. To investigate this claim we
consider two experiments; one focused on how large frailty effects need to be for
the HAJ estimator to be preferable to the AJ estimator and one focused on when the
non-Markov behaviour is significant enough for the HAJ estimator to compete with
the LMAJ estimator. The two experiments are:

1. V12 = V13 = V23 = 1 and V21 is gamma distributed with mean 1 and variance
σ 2 ∈ {0, 0.4, 1.2, 2}, ranging from no frailty (i.e. Markov) to heavily right-skewed
frailty;
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2. V = (V1, V2, V3, V4) is log-normal distributed with mean 1 and covariance matrix

Σ ≈

⎛

⎜
⎜
⎝

0.80 0.57 −0.35 0.37
0.57 0.42 −0.12 0.19

−0.35 −0.12 0.96 −0.63
0.37 0.19 −0.63 0.45

⎞

⎟
⎟
⎠ .

Then, W = log(V ) is normally distributed with EWj = −Σ j j/2 and
cov(Wj ,Wk) = log(1 + Σ jk).

As mentioned, the HAJ estimator can be seen as a compromise between two
extremes and the two experiments investigate to what extend such a compromise
is useful. In other words, do we need the HAJ estimator at all and if so how much do
we gain by using it?

In the first experiment, all transitions areMarkov unless the frailty variance σ 2 > 0,
in which case we get a single non-Markov transition. The question is how large the
frailty variance should be in order to detect a change in the transition probabilities. In
particular we are interested in at what point the HAJ estimator starts to outperform
the standard AJ estimator. In the second experiment all transitions are non-Markov
and we investigate how the HAJ estimator performs compared to the LMAJ estimator
under clear non-Markovian conditions induced by large correlated frailties (hence the
choice of Σ). The approximation sign in the specification of Σ is simply because Σ

is chosen numerically to ensure that the correlation matrix of W is positive definite.
We evaluate the performance of the estimators using two performance measures. We
consider pointwise (in time) empirical bias variance estimates (see Fig. 3) and mean
residual squared error (MRSE) (see Figs. 2 and 4). MRSE is measured by the L2
distance ‖ f − g‖2 = ∫ τ

s ( f (t) − g(t))2dt between estimates of t → Plk(s, t) and the
(simulated) true transition probability, with τ = 1000. Here s is landmark grid times
and the L2-distance is calculated as a Riemann sum over all jump times. All empirical
performance measures are produced based on 1000 simulations of each of the model
specifications above. In both experiments the HAJ estimator is constructed using the
grid test with a 5 percent significance level.

4.1 Experiment 1

From Fig. 2 we see that, for non-zero frailty variance, the HAJ estimator performs at
least as good as or better than the AJ estimator and better than the LMAJ estimator. In
other words, the interpretation of the HAJ estimator as an intermediary between the
AJ estimator and the LMAJ estimator seems to hold. In the Markov case, i.e. σ 2 = 0,
we see almost no performance difference between the HAJ and the AJ estimators.
Due to the in-built error from testing the Markov assumption we generally expect
better performance of the AJ estimator over the HAJ estimator for Markov models,
in particular for models with many transitions. For σ 2 = 0.4, the LMAJ estimator
performsworse than theAJ estimator. TheHAJ estimator is comparable toAJ for σ 2 =
0.4 but starts to outperform AJ for larger values of σ 2. In this experiment, HAJ always
performed better than LMAJ. In other words, Fig. 2 suggests that if a perturbation
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Fig. 2 Experiment one: Mean residual squared error for estimators (AJ, HAJ and LMAJ) of the transition
probabilities p jk from state j to state k as a function of landmark time points and frailty variance σ 2. All
numbers are based on 1000 samples where each sample has a size of 1000 individuals. The landmark grid
is {6, 9, 12, 14, 17, 20, 22, 25, 28, 30}

of the transition intensity is sufficiently large, so as to induce significant non-Markov
behaviour for the transition probabilities, then the HAJ estimator outperforms the
AJ and the LMAJ estimator. However, as we shall see in the next experiment, this
conclusion has its limitations. In the experiment all transitions are tested and results
from the point tests and grid tests are included in Online Resource A.1.1.

Regarding the bias-variance trade-off, we see from Fig. 3 that the AJ estimator
overestimates the transition probability P21(s, t), whereas the LMAJ and the HAJ
estimator are close to the true transition probability. We also see that the HAJ esti-
mator has smaller variance than the LMAJ estimator. This is exactly what we would
expect from the HAJ estimator. Through the selection method (the grid test applied
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Fig. 3 Bias and variance estimates of estimators of transition probability from state 2 to state 1 based on
the AJ, HAJ and LMAJ estimator respectively. All estimates are computed from landmark time s = 17 and
different levels of frailty variance σ 2. Mean bias and variance estimates are based on 1000 samples, where
each sample has a size of 1000 individuals

to all testable transitions) it accounts for the partly non-Markov and partly Markov
behaviour, resulting in smaller bias than the AJ estimator and less variance than the
LMAJ estimator.

4.2 Experiment 2

From Fig. 4 we see that for the estimated transition probability from state 2 to 1 and
state 2 to 3 the HAJ estimator performs slightly worse than the LMAJ estimator. This
is expected when the non-Markov behaviour is strong enough, simply because the
selection procedure for the HAJ estimator will make the wrong choice in some per-
centage of cases based on the significance level. The point at which the HAJ estimator
is favourable to either the LMAJ or the AJ estimator depends partly on sample size and
partly on how attenuated the non-Markov behaviour is. A good selection mechanism
should take both elements into account. If we use a test as selection mechanism one
could regard the significance level as a parameter deciding what “too much attenua-
tion” should mean. From this perspective a standard 5 percent level need not be the
optimal choice. In the experiment all transitions are tested and results from the point
tests and grid tests are included in Online Resource A.1.2.

5 An application to Norwegian registry data on sick leave, disability
and work participation

To illustrate the HAJ estimator and compare it to LMAJ and AJ estimator, we consider
a multi-state model with five states related to work participation. The proposed model
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Fig. 4 Experiment 2
(multivariate frailty): Mean
residual squared error for
estimators (AJ, HAJ and LMAJ)
of the transition probabilities
p jk from state j to state k. The
landmark grid is
{1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30}.

Fig. 5 A multi-state model for
work, education and
health-related absence from
work

is shown in Fig. 5 and consists of the following states: (1) work, (2) unemployment, (3)
sick leave, (4) education (above high school) and (5) disability, where disability is an
absorbing state. sick leave is defined here as paid partial or full long-term sick leave (16
≥ calendar days). Individual multi-state histories through these states are constructed
using data from various Norwegian national registries with data on employment, edu-
cation and welfare benefits. For more details on the data material and source registries,
see Hoff et al. (2019). In the dataset, information is available for the period 1992–2011
for all Norwegianmales born between 1971 and 1976 (n = 184 951). Additionally, sev-
eral individual covariates, on socioeconomic background, health, acquired education
levels and results from military conscript examination, were available. We included
individuals in the study from the 1st of July the year they turned 21 (1992–1997) and
observed them for 14.5 years, until 31st of December (2006–2011). The time scale
used in the model is days since inclusion, so that transition times are aligned on age
and season, but not year.
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One should realise that there are several potential violations of theMarkov assump-
tion for the model represented by Fig. 5. For example, it is plausible that individuals
who have been working for a longer period are in more stable positions, further pro-
longing their stay in employment. Another example is individuals on long-term sick
leave due to serious diseases, who may have lower probabilities for returning to work
than people with minor illnesses. There are also laws and regulations that limit the
possible duration of stays in states that are based on welfare benefits. Based on these
circumstances we consider two examples for the comparison of the AJ, LMAJ and
HAJ estimators. In particular, we look at transitions from sick leave at time t = 100
(100 days since inclusion) and transitions from unemployment at time t = 3000 (3000
days since inclusion). Note that these time points are chosen rather arbitrarily, to repre-
sent an early and late phase of the follow-up period. In the two examples that follows,
we have also for illustrative purposes reduced the original dataset from Hoff et al.
(2019) by looking at specific strata of covariate values.

5.1 Example 1: Transitions from sick leave at t = 100

In our first example, we calculate transition probabilities from being on sick leave at
day 100. The main motivation is to compare the AJ estimator with the LMAJ and
HAJ estimator of transition probabilities for starting points after the original time
of inclusion in the study (as this is where the AJ estimator may be biased due to
violations of the Markov assumption). Note however, that, as in this example where
time is measured as within year calendar time, the scientific question at t= 100 and
t = 0 could indeed be slightly different. For example, using this time scale allows
for investigating seasonal effects on the probability of returning to work from sick
leave. In this particular analysis, the full dataset is reduced from 184 951 individuals
to 23 288 by fixing a number of covariates. Specifically, we consider high school
completers attending general education (non-vocational) that scored between 7 and 9
(i.e. high scores) on the cognitive test during military conscript examinations (scores
range between 1-9 where 9 is considered the best). The landmark subset then consists
of only 72 individuals. Due to the heavy restriction on covariates, we expect the sample
population to now be fairly homogeneous compared to the full cohort. If the limited
sample size makes the LMAJ low-powered for certain transitions, we would expect
to see differences in the the LMAJ and HAJ estimates.

We start by looking at cumulative transition intensities in the landmark sample and
compare them with cumulative transition intensities calculated from the full dataset.
The various intensities are shown in Fig. 6. Differences between the curves from the
two data samples indicate a violation of the Markov assumption. Inspection of Fig. 6
suggests that transitions exhibiting similar intensities in the landmark sample and the
full sample are 1 → 2, 4 → 1 and 4 → 2. In addition to visual inspection, we can
test for non-Markov behaviour using the point test described in Sect. 3.2. Results from
this test, found in Online Resource Table C.1, imply that transitions 1 → 2, 2 → 5,
4 → 1 and 4 → 2 are not significantly non-Markov. Based on the above results,
the HAJ estimator will here utilize all available data for transitions (1 → 2, 2 → 5,
4 → 1 and 4 → 2) and only the landmark data for the other transitions. We illustrate
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Fig. 6 Cumulative transition intensities starting at landmark time-point s = 100 days. Full drawn lines are
Nelson-Aalen estimates based on the reduced cohort (n = 23288), while dotted lines are Nelson-Aalen
estimates based on the landmark sample of individuals in sick leave (n = 72)
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Fig. 7 Estimated transition probabilities from sick leave to work (3 → 1) and from sick leave to education
(3 → 4). Dotted lines are 95%bootstrap (1000 samples) confidence intervals. The landmark sample consists
of 72 individuals on sick leave at day 100. The full sample includes 23288 individuals

the resulting transition probabilities from the landmark state (sick leave) into work
and into education in Fig. 7. Estimated transition probabilities to all states based on
the HAJ and LMAJ estimators are found in Online Resource B.2.1.

In this example, LMAJ and HAJ estimates are in close agreement and differ sub-
stantially from the AJ estimates. The AJ transition probability estimates are far greater
than estimates produced by the LMAJ and HAJ estimators, indicating that the AJ esti-
mates are biased. Figure 7 show that for transition 3 → 1, the HAJ estimates appears
slightly smoothed compared to LMAJ estimates, and for transition 3 → 4, the point-
wise confidence intervals for the HAJ estimates are narrower at late times than the
confidence intervals for the LMAJ estimates. The AJ estimates have more narrow con-
fidence intervals due to the much larger sample size. Confidence intervals for the two
landmark estimators are based on bootstrapping, while for AJ estimator, Greenwood
plug-in estimates for standard errors were used. In Online Resource B.2.1, we also
compare plug-in estimates of standard errors with bootstrap estimates for the HAJ
estimator and find that they are very similar, with the bootstrap standard errors being
slightly larger.

5.2 Example 2: Transitions from unemployment at t = 3000

In our second examplewe still use data on high school completers of general education,
but now consider individuals with cognitive scores between 4 and 6 (medium scores)
and only individuals with parents who completed high school as their highest formal
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Fig. 8 Estimated transition probabilities fromunemployment to education (2 → 4) and fromunemployment
to disability (2 → 5). Dotted lines are 95% confidence intervals: model based for AJ and bootstrap (1000
samples) based for HAJ and LMAJ. The landmark sample consists of 463 individuals unemployed at day
3000. The full sample includes 10451 individuals

education. This amounts to a total of 10 451 individuals. Day 3000 is chosen as the
landmark time point, and the landmark state is now unemployment. The landmark
subset consists of 463 individuals. Results of log-rank tests for identifying Markov
and non-Markov transitions can be found in Online Resource Table C.2. The results
indicate that transitions 2 → 5, 3 → 2, 3 → 4, 3 → 5, 4 → 1 and 4 → 3 are
Markov. Thus, all available data are used for these transitions when constructing the
hybrid estimator.

Estimates of transition probabilities fromunemployment to education and disability
are presented in Fig. 8. Compared to our previous example, AJ estimates seem less
biased when compared to the estimates from the two landmark methods, but do fail to
capture the development in the first one third of the time period. In terms of precision,
the HAJ estimator seems to give higher precision than the LMAJ estimator for both
the showcased transitions.

Estimated transition probabilities to all states based on the HAJ and LMAJ estima-
tors and the corresponding comparison of bootstrap and Greenwood type estimates of
standard errors for the HAJ estimator in this example can be found in Online Resource
B.2.2.
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6 Discussion

The idea behind the HAJ estimator is to utilize the interpretation of transition probabil-
ities as a functional of transition specific rates and provide a framework for analyzing
how specific transitions affect the estimation of transition probabilities. This sensi-
tivity analysis point of view is useful when modelling non-Markov multi-state data.
First, it frames the problem of non-Markov behaviour as a more familiar problem of
bias-variance trade-off by considering the HAJ estimator as a compromise between
the AJ (low variance) and the LMAJ (low bias) estimators. As a rule of thumb, one
would generally expect the HAJ estimator to have higher bias (since one allows for
Markov behaviour to be assumed in specific transitions) and lower variance (due to
the increased sample size) than the LMAJ estimator. The opposite, i.e. higher vari-
ance and lower bias, is generally expected when compared to the AJ estimator. Based
on the simulation experiments it seems reasonable to believe that the lower variance
comes at close to zero cost in bias. There are of course exceptions to this rule and one
should be aware that, depending on the data generating mechanism, the HAJ estimator
may in principle be superior (in terms of bias or variance) to both or neither of the
alternatives (AJ and LMAJ). Secondly, with the HAJ estimator, one can think of the
problem of non-Markov behaviour as a transition specific modelling choice, where
certain transitions are more sensitive to non-Markov behaviour than others. Such con-
siderations suggest a more comprehensive exploratory analysis of where, in a specific
model, non-Markov behaviour can be problematic and where it might be negligible.
If negligible, the simplicity and convenience of the Markov model is desirable and
easier to report. In our construction of the HAJ estimator we focused on test statistics,
but other tools such as judgement based on expert knowledge and visual inspection of
plotted cumulative rates or transition probabilities can also be considered as selection
mechanisms.

The application in Sect. 5 shows how the concept of partly non-Markov multi
state is useful for real world data. The two examples in this section offer a more
detailed investigation of long term work and sick leave trajectories for high school
completers, following the analyses in Hoff et al. (2019). An even broader investigation
would be possible using covariate adjusted rate models on the full data. However, the
two examples illustrate the performance of the AJ, LMAJ and HAJ estimators in
settings with medium to small transition specific risk sets. This will often be more
representative for what you will see when using this type of registry data on sick
leave and work participation to follow up smaller patient cohorts, such as in Gran
et al. (2015), or when modelling other type of multi-state data, such as data describing
clinical progress of hospital patients (Hazard et al. 2020).

The choice between theHAJ, AJ and LMAJ estimator depends onwhat kind of non-
Markov behaviour one is dealing with and how pronounced it is in the data. Gunnes
et al. (2007) investigated the Datta-Satten estimator of state occupation probabilities
in non-Markov models and reached to some extent a similar conclusion; the benefit
of using an estimator which can handle non-Markov behaviour and is prone to bias
under Markov regimes depends heavily on how much and why the model in question
deviates from theMarkov property. In large cohort studies one often has to assume that
heterogeneity will be a problem simply due to the complexity of the underlying data
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generating mechanisms. Even in cases where the non-Markov behaviour is negligible
this seems like a problematic assumption to start from. Furthermore, a trivial but
important advantage of the HAJ estimator over the LMAJ estimator is the increase in
the sample size. Besides a reduction in variance thismight in practicemean a difference
between a feasible and an infeasible estimator. The HAJ estimator is therefore relevant
for many applications of non-Markov and partially non-Markov multi-state models,
in particular for studies of limited sample size, where the LMAJ estimator is not a
viable option.
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A On the estimation of the variance of transition probabilities for the
LMAJmodel

Glidden (2002, p. 366) states that the variance of the transition matrix is the same for
Markov and non-Markov data. We shall argue that the variances are different, and that
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the one for the non-Markov case is not easy to estimate analytically. Our recommended
approach, therefore, is bootstrapping.

Consider a number of independent individuals, i = 1, . . . , n, and let N (i)
jk (t) be a

counting process for transitions from j to k in the state space. The intensity process
of individual i relative to the complete history of the individual up to time t is

λ
(i)
jk (t) = Y (i)

j (t)Z (i)
jk (t), j, k ∈ E,

where E is the state space and Y (i)
j (t) is 1 if the individual is in state j just prior to

time t and zero otherwise. The process Z (i)
jk (t) is the (stochastic) transition rate from

j to k for individual i given that it is in state j just prior to time t (meaning that the
quantity Y (i)

j (t)Z (i)
jk (t) is defined to be zero when the individual is not in state j just

prior to time t). The Z -processes will generally differ between individuals according
to the history of each individual. It is only when the process is Markovian that the
transition rates will be fixed non-random quantities for all individuals.

According to counting process theory the process

M (i)
jk (t) = N (i)

jk (t) −
∫ t

0
λ

(i)
jk (s)ds

is a martingale with respect to the history of individual i given certain regularity
assumptions (see e.g. Aalen et al. 2008).

Since the individuals are independent,we can also define the history as the combined
history of all individuals. The martingale property is then valid with respect to this
combined history (due to independence). Define N jk(t) = ∑

i N
(i)
jk (t) and similarly

for the other processes. Hence, summing over individuals we get the martingales

Mjk(t) = N jk(t) −
∫ t

0
λ jk(s)ds.

Define

Z jk(t) = 1

Y j (t)

∑

i

{
Y (i)
j (t)Z (i)

jk (t)
}

.

Then

Mjk(t) =
∫ t

0

{
dN jk(s) − Y j (s)Z jk(s)

}
ds

is a martingale. Hence, the following expression is also a martingale:

M jk(t) =
∫ t

0
J j (s)

{
dN jk(s)

Y j (s)
− Z jk(s)

}

ds,

where J j (s) = I (Y j (s) > 0) (Aalen et al. (2008, p. 88)).
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The first part of the integral is the Nelson-Aalen estimator:

Λ̂ jk(t) =
∫ t

0
J j (s)

dN jk(s)

Y j (s)
, (12)

and it follows that this is unbiased for the quantity Λ∗
jk(t) = ∫ t

0 J j (s)Z jk(s)ds, and
hence an asymptotically unbiased estimator for the cumulative mean rates Λ jk(t) :=
∫ t
0 E(Z jk(s))ds. Under suitable regularity conditions we have

Λ̂ jk(t) − Λ jk(t) = M jk(t) + Λ∗
jk(t) − Λ̃ jk(t) + oP (1) (13)

for Λ̃ jk(t) := ∫ t
0 J j (s)E(Z jk(s))ds. From a standard martingale argument one may

deduce the variance of the martingale (for j �= k) M jk(t) as

[M jk(t)] =
∫ t

0
J j (s)

dN jk(s)

Y j (s)2
.

Furthermore, by independence of individuals and orthogonality (no common jumps)
of the transition counting processes we get

[M j j (t), M jk(t)] = −
∫ t

0
J j (s)

dN jk(s)

Y j (s)2
for j �= k,

[M jk(t), M j ′k′(t)] = 0 for j �= j ′ and �= (k �= k′),

[M j j (t)] =
∑

k �= j

∫ t

0
J j (s)

dN jk(s)

Y j (s)2
.

The optional co-variation processes above are precisely the co-variation from the
Nelson-Aalen estimator in the Markov case. However, from (13) we see that there is
additional variation which is not accounted for in the estimates above. As a conse-
quence, there will also be additional variation in either of the estimators: AJ, LMAJ
and HAJ. However, it is unclear what the size of the bias is. The results in the Online
Resource SectionA.2 andB.2 seem to indicate that the bias of the standardGreenwood
estimator is minor, but further studies of this are needed. It is generally not obvious
how to estimate the additional variation from (13). Perhaps one could identify the
additional variation under model specification of the hazard rates, but this is outside
the scope of this article. In practice we suggest bootstrapping.
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