37 research outputs found

    Shot Noise in Mesoscopic Transport Through Localised States

    Get PDF
    We show that shot noise can be used for studies of hopping and resonant tunnelling between localised electron states. In hopping via several states, shot noise is seen to be suppressed compared with its classical Poisson value SI=2eIS_I=2eI (II is the average current) and the suppression depends on the distribution of the barriers between the localised states. In resonant tunnelling through a single impurity an enhancement of shot noise is observed. It has been established, both theoretically and experimentally, that a considerable increase of noise occurs due to Coulomb interaction between two resonant tunnelling channels.Comment: 7 pages, 5 figures; Proceedings of the 10th Conference on Hopping and Related Phenomena (Trieste 2003); requires Wiley style files (included

    Statistics of Transmission Eigenvalues for a Disordered Quantum Point Contact

    Full text link
    We study the distribution of transmission eigenvalues of a quantum point contact with nearby impurities. In the semi-classical case (the chemical potential lies at the conductance plateau) we find that the transmission properties of this system are obtained from the ensemble of Gaussian random reflection matrices. The distribution only depends on the number of open transport channels and the average reflection eigenvalue and crosses over from the Poissonian for one open channel to the form predicted by the circuit theory in the limit of large number of open channels.Comment: 8 pages, 3 figure

    Enhanced shot noise in resonant tunnelling via interacting localised states

    Full text link
    In a variety of mesoscopic systems shot noise is seen to be suppressed in comparison with its Poisson value. In this work we observe a considerable enhancement of shot noise in the case of resonant tunnelling via localised states. We present a model of correlated transport through two localised states which provides both a qualitative and quantitative description of this effect.Comment: 4 pages, 4 figure

    First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.Comment: 6 pages, 2 figure

    The Polarised Valence Quark Distribution from semi-inclusive DIS

    Get PDF
    The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of opposite charge has been measured by the COMPASS experiment at CERN. The data were collected in the years 2002-2004 using a 160 GeV polarised muon beam scattered off a large polarised ^6LiD target and cover the range 0.006 < x < 0.7 and 1 < Q^2 < 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an evaluation of the first moment of Delta u_v + Delta d_v which is found to be equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously measured on the same data, this result favours a non-symmetric polarisation of light quarks Delta u-bar = - Delta d-bar at a confidence level of two standard deviations, in contrast to the often assumed symmetric scenario Delta u-bar = Delta d-bar = Delta s-bar = Delta s.Comment: 7 pages, 3 figures, COMPASS, revised: details added, author list update

    Spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2

    Get PDF
    We present a precise measurement of the deuteron longitudinal spin asymmetry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1 GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.Comment: 17 pages, 10 figure

    The Deuteron Spin-dependent Structure Function g1d and its First Moment

    Get PDF
    We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation matrix adde

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure

    A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

    Get PDF
    New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.Comment: 40 pages, 28 figure
    corecore