48,989 research outputs found

    Digital image correlation techniques applied to LANDSAT multispectral imagery

    Get PDF
    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates

    Homology of perfect complexes

    Get PDF
    It is proved that the sum of the Loewy lengths of the homology modules of a finite free complex F over a local ring R is bounded below by a number depending only on R. This result uncovers, in the structure of modules of finite projective dimension, obstructions to realizing R as a closed fiber of some flat local homomorphism. Other applications include, as special cases, uniform proofs of known results on free actions of elementary abelian groups and of tori on finite CW complexes. The arguments use numerical invariants of objects in general triangulated categories, introduced here and called levels. They allow one to track, through changes of triangulated categories, homological invariants like projective dimension, as well as structural invariants like Loewy length. An intermediate result sharpens, with a new proof, the New Intersection Theorem for commutative algebras over fields. Under additional hypotheses on the ring RR stronger estimates are proved for Loewy lengths of modules of finite projective dimension.Comment: This version corrects an error in the statement (and proof) of Theorem 7.4 in the published version of the paper [Adv. Math. 223 (2010) 1731--1781]. These changes do not affect any other results or proofs in the paper. A corrigendum has been submitted

    Finite-difference fluid dynamics computer mathematical models for the design and interpretation of experiments for space flight

    Get PDF
    Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface

    Controllability and observabiliy of an artificial advection-diffusion problem

    Full text link
    In this paper we study the controllability of an artificial advection-diffusion system through the boundary. Suitable Carleman estimates give us the observability on the adjoint system in the one dimensional case. We also study some basic properties of our problem such as backward uniqueness and we get an intuitive result on the control cost for vanishing viscosity.Comment: 20 pages, accepted for publication in MCSS. DOI: 10.1007/s00498-012-0076-

    SONTRAC: an imaging spectrometer for solar neutrons

    Get PDF
    An instrument capable of unambiguously determining the energy and direction of incident neutrons has important applications in solar physics-as well as environmental monitoring and medical/radiological sciences. The SONTRAC (SOlar Neutron TRACking) instrument is designed to operate in the neutron energy range of 20-250 MeV. The measurement principle is based on non-relativistic double scatter of neutrons off ambient protons (n-p scattering) within a block of densely packed scintillating fibers. Using this double-scatter mode it is possible to uniquely determine neutron energy and direction on an event-by-event basis. A fully operational science model of such an instrument has been built using 300 μm (250 μm active) scintillating fibers. The science model consists of a 5×5×5 cm cube of orthogonal plastic scintillating fiber layers. Two orthogonal imaging chains, employing image intensifiers and CCD cameras, allow full 3-dimensional reconstruction of scattered proton particle tracks. We report the results of the science model instrument calibration using 35-65 MeV protons. The proton calibration is the first step toward understanding the instrument response to n-p scatter events. Preliminary results give proton energy resolution of 2% (6%) at 67.5 (35) MeV, and angular resolution of 2° (4.5°) at 67.5 (35) MeV. These measurements are being used to validate detailed instrument simulations that will be used to optimize the instrument design and develop quantitative estimates of science return. Based on the proton calibration, neutron energy and angular resolution for a 10×10×10 cm version of SONTRAC is expected to be ~5% an

    Theoretical flow regime diagrams for the AGCE

    Get PDF
    The major criterion for the design of the Atmospheric General Circulation Experiment is that it be possible to realize strong baroclinic instability in the apparatus. A spherical annulus configuration which allows only steady basic state flows was chosen for the first set of stability analyses. Baroclinic instability was found for this configuration and few results suggest a regime diagram very different from the cylindrical annulus regime diagram

    On Resource-bounded versions of the van Lambalgen theorem

    Full text link
    The van Lambalgen theorem is a surprising result in algorithmic information theory concerning the symmetry of relative randomness. It establishes that for any pair of infinite sequences AA and BB, BB is Martin-L\"of random and AA is Martin-L\"of random relative to BB if and only if the interleaved sequence A⊎BA \uplus B is Martin-L\"of random. This implies that AA is relative random to BB if and only if BB is random relative to AA \cite{vanLambalgen}, \cite{Nies09}, \cite{HirschfeldtBook}. This paper studies the validity of this phenomenon for different notions of time-bounded relative randomness. We prove the classical van Lambalgen theorem using martingales and Kolmogorov compressibility. We establish the failure of relative randomness in these settings, for both time-bounded martingales and time-bounded Kolmogorov complexity. We adapt our classical proofs when applicable to the time-bounded setting, and construct counterexamples when they fail. The mode of failure of the theorem may depend on the notion of time-bounded randomness
    • …
    corecore