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Abstract

It is proved that the sum of the Loewy lengths of the homology modules of a finite free complex F

over a local ring R is bounded below by a number depending only on R. This result uncovers, in the
structure of modules of finite projective dimension, obstructions to realizing R as a closed fiber of some
flat local homomorphism. Other applications include, as special cases, uniform proofs of known results on
free actions of elementary abelian groups and of tori on finite CW complexes. The arguments use numerical
invariants of objects in general triangulated categories, introduced here and called levels. They allow one
to track, through changes of triangulated categories, homological invariants like projective dimension, as
well as structural invariants like Loewy length. An intermediate result sharpens, with a new proof, the New
Intersection Theorem for commutative algebras over fields. Under additional hypotheses on the ring R

stronger estimates are proved for Loewy lengths of modules of finite projective dimension.
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0. Introduction

We study homological properties of finite free complexes over noetherian local rings. The
results uncover novel links between the structure of the homology modules of such complexes
and conormal modules of the ring. Their statements incorporate intuition coming from research in
algebraic topology. The arguments use techniques from commutative algebra, differential graded
homological algebra, and triangulated categories, and develop new tools for these fields.

Let (R,m, k) be a local ring with maximal ideal m and residue field k. One theme that runs
through the paper is that when R has ‘small’ modules of finite projective dimension it is ‘not far’
from being regular. Here we measure the ‘size’ of an R-module M in terms of its Loewy length,
defined to be the number

��RM = inf
{
i � 0

∣∣miM = 0
}
.

When M is non-zero and of finite projective dimension, Loewy length one or two occurs if and
only if R is regular or a quadratic hypersurface, respectively.

We provide uniform lower bounds on Loewy lengths of modules of finite projective dimension
in terms of invariants depending only on the ring R. The first one involves the Castelnuovo–
Mumford regularity of R; see Section 1 for a definition.

Theorem 1. If R is Gorenstein and its associated graded ring grm(R) is Cohen–Macaulay, then
each non-zero R-module M of finite projective dimension satisfies

��RM � reg R + 1.
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This result applies, for example, when grm(R) is a graded complete intersection, that is,
grm(R) ∼= k[x1, . . . , xe]/I where I is generated by a homogeneous regular sequence g1, . . . , gc;
in this case reg R =∑c

j=1(deggj − 1). Even this special case of the theorem above was known
only for c = 1, where it was proved by Ding [17].

Applications of Theorem 1 are restricted by the fact that its hypothesis is on the associated
graded ring, rather than on the ring of interest. For instance, grm(R) need not be Cohen–
Macaulay even when R is a local complete intersection.

In the remaining results of this work the hypotheses bear on the structure of R itself. Recall
that its embedding dimension is the number edimR = rankk(m/m2).

Theorem 2. Let (P,p) → (Q,q) be a flat local homomorphism and set R = Q/pQ.
Every non-zero R-module M of finite projective dimension then satisfies

��RM � edimP − edimQ + edimR + 1.

In particular, one has ql � pQ for l = edimP − edimQ + edimR.

The special case edimR = edimQ captures an important aspect of the theorem: If mhM = 0
for some R-module M of finite projective dimension, then R admits no embedded (that is to say,
with pQ ⊆ q2) flat deformation over a base of embedding dimension greater than h.

Theorem 1 is proved in Section 1, using invariants of Gorenstein local rings defined by
M. Auslander and studied by S. Ding. The proof of Theorem 2 is an altogether different af-
fair. It is derived from a more general result, which gives information on the structure of the
homology of finite free complexes; that is, complexes of finitely generated free R-modules of the
form

F = 0 −→ Fs −→ Fs−1 −→ · · · −→ Ft+1 −→ Ft −→ 0.

In our main result we estimate the sum of the Loewy lengths of the homology modules of F

in terms of another invariant of R, which we call the conormal free rank and denote cf-rankR.
When R is complete equicharacteristic or is essentially of finite type over a field, cf-rankR equals
the maximal rank of a free summand of its conormal module; see Section 8. The inequality in
the next theorem is sharp, in the sense that equality holds in some cases.

Theorem 3. Every finite free complex F with H(F ) �= 0 satisfies an inequality:∑
n∈Z

��RHn(F ) � cf-rankR + 1.

Evidently, to apply this result one needs lower bounds for the conormal free rank.
In the situation of Theorem 2 the free R-module pQ/(pQ)2 is the conormal module of the

surjection Q → R, which can be used to show that cf-rankR is not less than l. This allows one
to deduce Theorem 2 from Theorem 3.

One case when the value of cf-rankR is known is when R is complete intersection: it is equal
to the codimension of R. Remarkably, over such rings one can bound Loewy length of homology
for every homologically finite complex, see Theorem 7.
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The proof of Theorem 3 is presented in Section 10. It draws on the results of Sections 2
through 9 and involves a number of concepts and techniques that are not traditional for commu-
tative algebra.

The first move is to replace complexes over rings with DG (that is, differential graded) mod-
ules over DG algebras. Such a procedure was developed by Avramov to study homological
invariants of rings and modules; see [5] for a survey. It utilizes the possibility of adjusting the
algebraic properties of a DG algebra by replacing it with a quasi-isomorphic one, while replacing
its derived category with an equivalent category. However, the situation here is different because
structural properties, such as Loewy length, depend on the underlying graded algebra of a DG
algebra and need not be preserved by equivalences of derived categories.

A crucial new idea is to bound Loewy length by numerical invariants of objects of the de-
rived category of the ring that behave predictably under applications of exact functors. Their
introduction is motivated in part by work of Dwyer, Greenlees, and Iyengar [19]. These authors
transported from homotopy theory into commutative algebra the concept of building an object X

in a triangulated category T from some fixed object C of T. Here we define a number, levelCT (X),
that we call the level of X with respect to C in T. It measures the number of extensions needed
in the ‘building process’. Further suggestions that such a notion might be useful came from the
papers of D. Christensen [16], Bondal and Van den Bergh [11], and Rouquier [32,33] dealing
with dimensions of triangulated categories.

To show how these ideas fit together we sketch an outline of the proof of Theorem 3. It also
serves as an overview of the content of the paper.

In Section 2 we define levels and record their elementary properties.
In Section 3 we specialize to the case of the derived category D(A) of DG modules over a DG

algebra A; for simplicity, we write levelCA(X) in place of levelCD(A)(X). Two levels over A play a
special role in this work.

Levels with respect to the DG A-module A extend the concept of projective dimension from
modules over a ring to DG modules over a DG algebra. For instance, for every complex F of
finite free R-modules the definitions give an inequality

levelRR(F ) � card{n ∈ N | Fn �= 0}. (∗)

A structure theorem for DG A-modules of finite A-level is proved in Section 4. In Section 5 it
is used, along with the main theorem of [6], to prove the result below. In view of (∗), the inequal-
ity on the right generalizes and sharpens the classical New Intersection Theorem for commutative
noetherian algebras over fields.

Theorem 4. Let A be a DG algebra with zero differential, let M be a DG module over A, and let
I denote the annihilator of H(M) =⊕n∈Z

Hn(M) in the ring A� =⊕n∈Z
An.

When A� is a commutative noetherian algebra over a field one has

proj dimA H(M) + 1 � levelAA(M) � height I + 1.

Of major importance here is also the level with respect to a semi-simple DG A-module k; its
behavior is akin to that of Loewy length of modules over rings. The basic properties of levelkA(−)

are derived in Section 6. In particular, we prove
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Proposition 5. If M is a complex of R-modules and H(M) has finite length, then∑
n∈Z

��RHn(M) � levelkR(M) � max
n∈Z

{
��RHn(M)

}
.

The next stage in the proof of Theorem 3 is to construct a chain of exact functors

D(R)
t

D(K)
j

≡ D(Λ ⊗k B)
i

D(Λ)

of derived categories of DG modules, where ≡ flags an equivalence. The DG algebras are:
the ring R viewed as a DG algebra concentrated in degree 0; the Koszul complex K on a
minimal generating set for m; a DG k-algebra B with rankk B < ∞; and an exterior algebra
Λ = k〈ξ1, . . . , ξc〉 with deg ξi = 1, zero differential, c = cf-rankR.

Two functors are easy to describe: t(−) = K ⊗R − and i is the forgetful functor defined by
the canonical morphism Λ → Λ ⊗k B . On the other hand, the construction of the equivalence of
categories j takes up all of Section 9, where we also prove that the DG module jt(k) ∈ D(Λ ⊗k B)

is a direct sum of suspensions of copies of k; as a consequence, levels with respect to jt(k) are
equal to k-levels. This fact, together with the formal property that functors do not raise levels and
equivalences preserve them, justify all but the initial step in the following sequence:∑

n∈Z

��RHn(F ) � levelkR(F ) � levelt(k)
K

(
t(F )

)
= leveljt(k)

Λ⊗kB

(
jt(F )

)= levelkΛ⊗kB

(
jt(F )

)
� levelkΛ(N),

where we have set N = ijt(F ). The first inequality is provided by Proposition 5.
To finish the proof of Theorem 3 one needs an estimate for levelkΛ(N). The key to obtaining

one is to show that N is isomorphic in D(Λ) to a DG module with finite free underlying graded
Λ-module. To do this we first remark that formula (∗) implies that the finite free complex F has
finite R-level, then use results on persistence of levels to show that N has finite Λ-level, and
finally prove that the last condition is equivalent to N being finite free as a graded Λ-module.

It remains to use the equality in the following result of independent interest:

Theorem 6. If N is a DG Λ-module with finite free underlying graded Λ-module and with
H(N) �= 0, then one has

card
{
n
∣∣Hn(N) �= 0

}
� levelkΛ(N) = c + 1.

The proof of Theorem 6 itself consists of two independent steps. The first one is to reduce
the computation of levelkΛ(N) to that of levelSS(M), where S is a polynomial ring in c indeter-
minates over k, and M is a DG S-module with rankk H(M) finite. For this we use a DG version
of the Bernstein–Gelfand–Gelfand equivalence, presented in Section 7. Theorem 4 then gives
levelSS(M) = c + 1.

All the threads of the delicate proof of Theorem 3 come together in Section 10. In the final
count, the argument hinges on the ability to simultaneously track numerical invariants, both struc-
tural and homological, under the actions of various functors. Its success attests to the remarkable
versatility of the concept of level.



1736 L.L. Avramov et al. / Advances in Mathematics 223 (2010) 1731–1781
Theorem 3 is restricted to finite free complexes. Using results from [4], over certain rings we
extend it to a statement about all complexes with finite homology:

Theorem 7. If R is a complete intersection local ring and M is a complex of R-modules with
H(M) finite and non-zero, then one has an inequality∑

n∈Z

��RHn(M) � codimR − cxR M + 1.

This is proved in Section 11. The number cxR M , known as the complexity of M , is the
least non-negative integer d such that the ranks of the free modules in a minimal free resolution
of M are bounded by a polynomial of degree d − 1. Theorem 7 can also be deduced from a
strengthening of Theorem 6 that covers all DG Λ-modules with finite underlying graded module;
see [8].

The last two theorems above have antecedents in the study of the homology of a finite CW
complex X with an action of an elementary abelian group or of a torus.

When G is an elementary abelian p-group and X has a G-equivariant cellular decom-
position, its cellular chain complex with coefficients in Fp is finite free over the ring T ∼=
Fp[x1, . . . , xc]/(xp

1 , . . . , x
p
c ). Carlsson [13] established that∑

n

��T Hn(X;Fp) � c + 1

holds by proving Theorem 7 for M a finite free complex over T and p = 2. Allday, Baumgartner,
and Puppe, see [2], proved Theorem 7 for odd p and for all complexes of T -modules with finite
homology; the arguments depend on the parity of p.

When the induced action of G on H∗(X;Fp) is trivial the inequality above simply states that
X has at least c + 1 non-trivial homology groups with coefficients in Fp . Allday and Puppe [2]
proved a similar estimate for almost free torus actions:

card
{
n
∣∣Hn(X;Q) �= 0

}
� c + 1.

The algebraic core of their proof is a property of DG modules over a polynomial ring S in c

indeterminates over Q, which is implied by Theorem 4.
The original proofs of the theorems on group actions heavily depend on the structure of the

rings S and T . Our results demonstrate that these theorems are manifestations of general proper-
ties of complexes over commutative noetherian rings.

1. Loewy length of modules of finite projective dimension

Let R be a commutative local noetherian ring with maximal ideal m and residue field k =
R/m. The Loewy length of an R-module M is the number

��RM = inf
{
n ∈ N

∣∣mnM = 0
}
.

When M is finitely generated, ��RM is finite if and only if its (Jordan–Hölder) length, denoted
�R M , is finite. Often the Loewy length of M carries more structural information than does its
length.
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Let G denote the associated graded ring grm(R); thus, G0 = k and G is generated over G0
by G1. Choose a presentation G ∼= P/J with P = k[x1, . . . , xe], a polynomial ring in indetermi-
nates xi of degree 1, and J a homogeneous ideal. Set

regR = sup
{
j
∣∣ TorPi (G,P/P�1)i+j �= 0

}
.

In other words, reg R is the Castelnuovo–Mumford regularity, regP G, of the graded P -module
G; it is independent of the choice of P , see e.g. Şega [36, 1.4].

The order of the ring R is given for singular R by the formula

ordR = inf

{
n ∈ N

∣∣∣ �R

(
R/mn+1)<

(
n + e

e

)}
where e = edimR; when the ring R is regular we set ordR = 1.

The next result contains Theorem 1 from the introduction. It applies, in particular, when R is
the localization or the completion of a standard graded Gorenstein ring G at the maximal ideal⊕

n�1 Gn.

Theorem 1.1. If R is Gorenstein and the associated graded ring grm(R) is Cohen–Macaulay,
then for each non-zero R-module M of finite projective dimension

��RM � reg R + 1 � ordR.

When k is infinite the first inequality becomes an equality for some such module M .

The proof uses numerical invariants introduced by M. Auslander.
Let R be a Gorenstein local ring and M a finite R-module. Let Mcm denote the sum of all

submodules λ(L) ⊆ M , when L ranges over all maximal Cohen–Macaulay R-modules with no
non-zero free direct summand, and λ ranges over all R-linear homomorphisms L → M . The
minimal number of generators of the R-module M/Mcm is called the delta invariant of M and
is denoted δR(M).

The basic properties of δR(−), due to Auslander, are collected in the next result. Their proofs
in the literature are scattered and some use alternative characterizations, so we provide complete
details.

Lemma 1.2. Let M , N be finite modules over a Gorenstein local ring (R,m, k).
The following (in)equalities then hold:

δR(M) = δR(M ′) + δR(M ′′) when M = M ′ ⊕ M ′′, (1.2.1)

δR(M) � δR(N) when M → N is a surjective homomorphism, (1.2.2)

δR(M) = rankk(M/mM) when proj dimR M < ∞, (1.2.3)

δR

(
R/mn

)= 1 for all n � 0, (1.2.4)

δR(k) = 1 if and only if R is regular. (1.2.5)
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Proof. The first two assertions are evident.
For the third one, it suffices to prove that if L is a maximal Cohen–Macaulay module and

λ :L → M is a homomorphism of R-modules with λ(L) � mM , then L has a non-zero free
summand. Consider an exact sequence

0 −→ E −→ F
π−→ M −→ 0

with F free and E ⊆ mF . By [12, 3.3.10(d)] and induction on proj dimR E, one gets
Ext1R(L,E) = 0, so the following map is surjective:

HomR(L,π) : HomR(L,F ) −→ HomR(L,M).

Thus, there is a homomorphism ρ :L → F with πρ = λ. Choosing x ∈ L with λ(x) not in
mM we get y = ρ(x) /∈ mF , so Ry is a non-zero free direct summand of F . The composition
L → F → Ry is then surjective, as desired.

To prove the fourth formula, choose a maximal R-regular sequence x. Since �R(R/Rx) is
finite, for all n � 0 one has mn ⊆ Rx. Since proj dimR(R/Rx) is finite the surjection R/mn →
R/Rx implies δR(R/mn) � 1, see (1.2.3). It remains to note that any finite R-module M satisfies
δR(M) � rankk(M/mM).

As to the last one, R regular implies proj dimR k finite, hence δR(k) = 1 by (1.2.3). If R is not
regular, then it has a maximal Cohen–Macaulay R-module L with no non-zero free summands.
Picking any surjection L → k one gets δR(k) = 0. �

The index of R is defined by Auslander to be the number

indexR = inf
{
n ∈ N

∣∣ δR

(
R/mn

)
� 1

}
.

It is a positive integer, by (1.2.4), and equals 1 if and only if R is regular, by (1.2.5).
The next result is the first step in the proof of Theorem 1.1.

Lemma 1.3. Let R be a Gorenstein local ring and M a finite, non-zero R-module. If the projective
dimension of M is finite, then one has

��RM � indexR.

Proof. We may assume ��RM = l < ∞. For r = rankk(M/mM) there is then a surjection
(R/ml )r → M . The formulas in Lemma 1.2 yield (in)equalities

r · δR

(
R/ml

)= δR

((
R/ml

)r)� δR(M) = r.

They imply δR(R/ml ) � 1, which means l � indexR. �
To get lower bounds for indexR we use a result of Ding. In order to state it we recall that

a sequence x1, . . . , xd of elements of m is said to be super-regular if their initial forms in the
associated graded ring grm(R) form a regular sequence.
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1.4. When R is Gorenstein, grm(R) is Cohen–Macaulay, and x is a super-regular sequence of
length dimR in m � m2, the proof of [17, 2.1] yields an equality:

indexR = ��R(R/Rx).

Lemma 1.5. If the ring R is Gorenstein and grm(R) is Cohen–Macaulay, then

indexR = reg R + 1.

Proof. Set G = grm(R), and choose a presentation G ∼= P/J , where P is a polynomial ring
over k, generated by finitely many indeterminates of degree 1.

After a flat base change one may assume that k is infinite. One can then find in P1 a sequence
y = y1, . . . , yd , with d = dimG, which is both G-regular and P -regular. For i = 1, . . . , d choose
xi ∈ m � m2 with initial form yi ∈ G1. The sequence x = x1, . . . , xd is then super-regular, and
one has a chain of equalities

indexR = ��R(R/Rx)

= inf
{
n ∈ N

∣∣ (G1)
n
(

grm(R/Rx)
)= 0

}
= inf

{
n ∈ N

∣∣ (G1)
n(G/Gy) = 0

}
= regP (G/Gy) + 1

= regP G + 1

that come from 1.4, the definition of Loewy length, the isomorphism grm(R/Rx) ∼= G/Gy, see
[34, 0.1], and standard properties of regularity. �

One last observation is needed before proving the theorem.

1.6. For every local ring R one has reg R � ordR − 1.
Indeed, let R̂ ∼= Q/I be a minimal regular presentation; see 8.1. By passing to associated

graded rings one gets from it an isomorphism G ∼= P/J , where P is a polynomial ring in e =
edimR indeterminates. One has rankk P/(P1)

n+1 = (n+e
e

)
, so ordR is equal to the least degree

of a non-zero element in J . The isomorphism TorP1 (G, k) ∼= J ⊗P k of graded vector spaces then
yields the desired inequality.

Proof of Theorem 1.1. Lemmas 1.3, 1.5, and 1.6, imply

��RM � reg R + 1 � ordR.

When k is infinite the R-module M ′ = R/Rx from the proof of Lemma 1.5 has proj dimR M ′ <
∞. The computation there yields ��RM ′ = regP G + 1. �

In many situations good estimates of the regularity of graded rings are known. The next result
provides one that seems to be new. It involves conormal modules, which also appear in our main
result, see Theorem 10.1.
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Proposition 1.7. Suppose G ∼= P/J with P a standard graded polynomial ring over k and J a
homogeneous ideal.

If J/J 2 is isomorphic to (
⊕c

j=1 G(−nj )) ⊕ C as graded G-modules, then

regP G �
{∑c

j=1(nj − 1) when C = 0,∑c
j=1(nj − 1) + (m − 1) otherwise

where m is the least degree of a non-zero element in J .

Proof. Let K be the Koszul complex on a k-basis of G1, considered as a complex of graded G-
modules. For each i one then has TorPi (G, k) ∼= Hi (K) as graded k-vector spaces. The arguments
in the proofs of [23, (2.3) and (2.1)], see Theorem 9.2, show that K is quasi-isomorphic to a
complex of graded k-vector spaces V ⊗k W , where

V = · · · 0−→∧i+1

(
c⊕

j=1

k(−nj )

)
0−→∧i

(
c⊕

j=1

k(−nj )

)
0−→ · · ·

and W satisfies W0 = k and ∂(W1) = 0 = ∂(W2). The isomorphisms

Vc
∼= k(−n) and H(V ⊗k W) ∼= V ⊗k H(W),

where n =∑c
j=1 nj , define injective linear maps of graded vector spaces

k(−n) ⊗k W0 −→ TorPc (G,k), (1.7.1)

k(−n) ⊗k W1 −→ TorPc+1(G, k). (1.7.2)

From (1.7.1) one gets regP G � n − c, which is the first inequality of the proposition. Set
q = inf{j ∈ Z | (W1)j �= 0}. The isomorphisms(

c⊕
j=1

k(−nj )

)
⊕ (C ⊗P k) ∼= J ⊗P k ∼= TorP1 (G, k) ∼= V1 ⊕ W1

of graded k-vector spaces yield W1 ∼= C ⊗P k ⊆ J ⊗P k. Thus, C �= 0 implies q � m, so (1.7.2)
gives reg G � (m + n) − (c + 1). This is the second desired inequality. �

The theorem is readily applicable to a class of complete intersection rings that includes all
hypersurface rings. The notation is that of Theorem 1.1.

Example 1.8. Suppose the local ring (R,m, k) is a strict complete intersection of type
(n1, . . . , nc), meaning that for some isomorphism grm(R) ∼= P/J the ideal J can be generated
by a homogeneous P -regular sequence g = g1, . . . , gc with deggj = nj .

For every R-module M of finite projective dimension one has

��RM �
c∑

(nj − 1) + 1.
j=1
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Indeed, the hypothesis implies an isomorphism J/J 2 ∼=⊕c
j=1 grm(R)(−nj ) of graded mod-

ules over grm(R), so Theorem 1.1 and Proposition 1.7 apply.

2. Levels in triangulated categories

To any object, say X, in a triangulated category we associate a numerical invariant that mea-
sures the minimal number of steps necessary to ‘build’ X out of objects belonging to some fixed
reference class. Its definition uses techniques developed by Beilinson, Bernstein, and Deligne [9,
§1.3], Bondal and Van den Bergh [11, §1], D. Christensen [16], and Rouquier [33], and is partly
motivated by the work of these authors. Where our approach differs from theirs is in the focus
on properties of individual objects, rather than on global invariants of triangulated categories.

In this section we review the constructions allowed in the building process alluded to above,
define levels, and record some general features. Only basic properties of triangulated categories
are needed, and they can be found in Krause’s succinct exposition [25, §§1–3]; for more details
we refer the reader to Neeman’s book [28].

We use Σ to denote the suspension functor in a triangulated category. Let S be a subcategory—
always assumed non-empty—of a triangulated category T. We say that S is strict if it is closed
under isomorphisms in T; it is full if every morphism in T between objects in S is contained in S.
A strict full subcategory S is thick if it is additive, closed under direct summands, and in any
exact triangle L → M → N → ΣL in T when two of the objects L,M,N are in S so is the third.
Note that every thick subcategory is triangulated.

2.1. Operations on subcategories. Let T be a triangulated category and A a subcategory of T. We
define several closure operations on A in T.

2.1.1. The intersection of all strict and full subcategories of T that contain A and are closed under
finite direct sums and all suspensions is denoted addΣ(A); in [11] this subcategory is denoted
add A.

2.1.2. The intersection of all full subcategories of T that contain A and are closed under retracts
(equivalently, isomorphisms and direct summands) is denoted smd(A).

2.1.3. Given strict and full triangulated subcategories A and B of T, let A � B be the full subcate-
gory whose objects are described as follows:

A � B =
⎧⎨⎩M ∈ T

∣∣∣ there is an exact triangle
L → M → N → ΣL

with L ∈ A and N ∈ B

⎫⎬⎭ .

This subcategory is strict. For every strict and full subcategory C of T one has

A � (B � C) = (A � B) � C
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see [9, (1.3.10)]. Thus, the following notation is unambiguous:

A�n =

⎧⎪⎪⎨⎪⎪⎩
{0} for n = 0;
A for n = 1;

n copies︷ ︸︸ ︷
A � · · · � A for n � 2.

We refer to the objects of A�n as (n − 1)-fold extensions of objects from A.

2.1.4. Let C be a subcategory of T. The intersection of all thick subcategories of T containing
C is itself a thick subcategory, called the thick closure of C in T; in this paper it is denoted by
thickT(C).

Properties of objects in a subcategory often propagate to its thick closure:

2.1.5. Let P denote a property of objects in T, and assume that the full subcategory consisting of
the objects with property P is thick.

If each C ∈ C has property P , then so does every object in thickT(C).

One can approximate thickT(C) ‘from below’ by a process used in [16], [11], [33].

2.2. Thickenings. Let C be a subcategory of T.
For each n ∈ N the nth thickening of C is the full subcategory with objects

thickn
T(C) =

⎧⎨⎩
{0} if n = 0,

smd(addΣ(C)) if n = 1,

smd(thickn−1
T (C) � thick1

T(C)) if n � 2.

This subcategory appears implicitly in [16] and explicitly in [11], where it is denoted 〈C〉n but is
not named. It is closed under suspensions, finite direct sums, and retracts, but it is not necessarily
closed under formation of exact triangles.

2.2.1. The equality below, see [11, §2.1, p. 5], provides an alternative description:

thickn
T(C) = smd

(
addΣ(C)�n

)
.

In words: The objects in the nth thickening of C are retracts of (n− 1)-fold extensions of objects
in addΣ(C). Thus, the nth thickening can also be built out of the (n − 1)st one by gluing objects
to the left.

2.2.2. If C is contained in some thick subcategory S of T, then it follows from the definitions that
for each integer n � 0 one has thickn

S(C) = thickn
T(C).

2.2.3. Letting (−)op denote passage to the opposite category, from 2.2.1 one gets

thickn
T(C)op = thickn

Top

(
Cop).
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2.2.4. The thickenings of C provide a natural filtration of its thick closure in T:

{0} = thick0
T(C) ⊆ thick1

T(C) ⊆ · · · ⊆
⋃
n∈Z

thickn
T(C) = thickT(C).

In [11,33] the filtration above is used to define the dimension of T as the infimum of the
integers d � 0 with the property that thickd+1

T (C) = T for some object C ∈ T. Here we derive
from the filtration numerical invariants of the objects of T.

2.3. Levels. Let C be a subcategory of T.
To each object M in T we associate the number

levelCT (M) = inf
{
n ∈ N

∣∣M ∈ thickn
T(C)

}
and call it the C-level of M . It measures the number of steps required to build M out of addΣ(C).
Evidently, levelCT (M) < ∞ is equivalent to M ∈ thickT(C).

When C consists of a single object, C, we write levelCT (M) in place of level{C}
T (M).

Lemma 2.4. For each object M ∈ T the following statements hold.

(1) levelCT (ΣiM) = levelCT (M) for all i ∈ Z.
(2) If N → M → P → ΣN is an exact triangle in T, then

levelCT (M) � levelCT (N) + levelCT (P ).

(3) levelCT (M ′ ⊕ M ′′) = max{levelCT (M ′), levelCT (M ′′)}.
(4) If C is contained in a thick subcategory S of T, then

levelCS(M) = levelCT (M).

(5) levelCT (M) = levelC
op

Top (M).
(6) If f : T → U, respectively, f : Top → U, is an exact functor of triangulated categories, then the

following inequality holds:

levelf(C)
U

(
f(M)

)
� levelCT (M).

Equality holds if there is a functor g : U → T with gf � idT, respectively, g : U → Top with
gf � idTop

; in particular, when f is an equivalence.

Proof. The (in)equalities in (1), (2), and (3) come from the definition of levels. Parts (4) and (5)
come from 2.2.2 and 2.2.3, respectively. Part (6) clearly holds when f is defined on T; given (5),
the case when it is defined on Top follows. �

We close the general discussion of levels with some special features of these invariants in the
case of the derived category of an associative ring.

2.5. Levels of complexes of modules. Let R be an associative ring.
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In this paper R always acts on its modules from the left. Our gradings are usually ‘homologi-
cal’. Thus, complexes of R-modules have the form

M = · · · −→ Mn+1
∂n+1−−−→ Mn

∂n−→ Mn−1 −→ · · · .

For each integer d the d th suspension of M is the complex defined by(
ΣdM

)
n

= Mn−d and ∂Σ
dM = (−1)d∂M.

We identify R-modules with complexes concentrated in degree 0, and graded R-modules with
complexes with zero differential. Quasi-isomorphisms are morphisms of complexes that induce
isomorphisms in homology; they are flagged with the symbol �, while ∼= is reserved for isomor-
phisms.

A complex of R-modules M is bounded above, respectively, bounded below, when Mi = 0
holds for all i � 0, respectively, for all i � 0; it is bounded when both conditions hold; it is
perfect if it is quasi-isomorphic to a bounded complex of finite projective R-modules.

Let D(R) denote the unbounded derived category of the category of R-modules; see [25,
3.2] for a description of D(R) as a triangulated category. We extend the use of � to mark also
isomorphisms in D(R).

2.5.1. Let S be a thick subcategory of D(R), such as the derived category of homologically
bounded above (respectively, bounded below, bounded, or perfect) complexes. For each subcat-
egory C in S, each n � 0, and each M ∈ S one has

thickn
S(C) = thickn

D(R)(C) and levelCS(M) = levelCD(R)(M)

by 2.2.2 and Lemma 2.4(4). We use the abbreviations

thickn
R(C) = thickn

D(R)(C) and levelCR(M) = levelCD(R)(M).

Levels of a complex have useful relations to the corresponding levels of its components.
A similar relation to homology is contained in Proposition 3.10(2).

Lemma 2.5.2. For every complex of R-modules M there is an inequality

levelCR(M) � inf

{∑
n∈Z

levelCR(Ln)

∣∣∣ L � M in D(R)

}
.

Proof. As levelCR(M) = levelCR(L), it suffices to assume that only finitely many components Ln

are non-zero and to show that then one has

levelCR(L) �
∑
n∈Z

levelCR(Ln).

The complex L admits a filtration · · · ⊆ L�n−1 ⊆ L�n ⊆ · · · , and there are isomorphisms
L�n/L�n−1 ∼= ΣnLn. Lemma 2.4(1) yields levelCR(ΣnLn) = levelCR(Ln), so one gets the desired
inequality by a repeated application of Lemma 2.4(2). �
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As an example, we deduce an inequality that appears in the introduction.

Example 2.5.3. If P is a complex of finite projective R-modules, then

levelRR(P ) � card{n ∈ Z | Pn �= 0}.
Just note that each Pn is in thick1

R(R) and apply Lemma 2.5.2.

3. Levels of DG modules

In this section we move from modules over rings to DG (= differential graded) modules
over DG algebras. We start by recalling some concepts and collecting notation and basic facts
concerning DG algebras and DG modules.

Throughout this paper, we consider DG objects as collections of abelian groups indexed by the
integers, rather than direct sums of such groups. This point view, prevalent among topologists, is
systematically developed in MacLane’s books; see especially [27, §VI.2]. A consequence is that
every element m of a graded object M has a degree, denoted |m|; namely, one has |m| = i if and
only if m belongs to Mi . Differentials have degree −1. DG algebras act on their DG modules
from the left.

Rings are identified with DG algebras concentrated in degree 0. DG modules over a ring are
just complexes of modules, and modules over it are identified with complexes concentrated in
degree 0.

A graded algebra is a DG algebra with zero differential. It should be noted that in a DG
algebra elements of different degrees cannot be added. Furthermore, DG modules over a graded
algebra A should not be confused with complexes over it: The first ones have a unique grading
and their differentials satisfy the identity ∂(am) = (−1)|a|a∂(m), while the second ones are
equipped with two gradings (homological and internal), and their differentials are A-linear.

Let A be a DG algebra and M , N be left DG modules.
A homomorphism β :M → N of degree d is a family (βi :Mi → Ni+d)i∈Z of additive

maps satisfying β(am) = (−1)d|a|aβ(m) for a ∈ A and m ∈ M . All such homomorphisms
form the d th component of a complex, HomA(M,N), whose differential is given by ∂(β) =
∂Nβ − (−1)|β|β∂M . A morphism of DG modules M → N is a homomorphism β of degree 0,
satisfying ∂Nβ = β∂M . A quasi-isomorphism is a morphism that induces an isomorphism in
homology.

We let A
 and M
 denote the underlying graded algebra and graded module over it. For each
integer s let ΣsM
 denote the graded Z-module with (ΣsM
)i = Mi−s . The map m �→ m is a
homomorphism σ s :M
 → ΣsM
 of degree s. Let ΣsM denote the DG A-module with underly-
ing graded Z-module ΣsM
, action of A given by aσ s(m) = (−1)|a|sσ s(am), and differential by
∂(σ s(m)) = (−1)sσ s(∂(m)).

Proofs of statements in 3.1–3.4 below can be found in [7].

3.1. Semi-free DG modules. A DG module F over a DG algebra A is semi-free if it admits a
family (F n)n∈Z of DG A-submodules satisfying the conditions:

Fn ⊆ Fn+1, F−1 = 0,
⋃
n∈Z

Fn = F, and

Fn+1/Fn is isomorphic to a direct sum of suspensions of A.
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In this case, the functors HomA(F,−) and − ⊗A F , defined on the category of DG A-modules
and right DG A-modules, respectively, preserve quasi-isomorphisms.

Thus, if A is an algebra over a field k the functor HomA(−,Homk(F, k)) preserves quasi-
isomorphisms of right DG A-modules, as it is isomorphic to Homk(− ⊗A F,k).

3.2. Semi-free resolutions. Each DG A-module M admits a quasi-isomorphism F → M with F

a semi-free DG A-module. Such a semi-free resolution of M is unique up to homotopy of DG
A-modules.

3.3. Derived categories. Let A be a DG algebra. We let D(A) denote the derived category of
DG A-modules. Its objects are DG A-modules, and it can be realized as the homotopy category
of semi-free DG A-modules. The derived category is triangulated, see [24, §4] or [25, 3.2] for
constructions.

We consider every ring R as a DG algebra concentrated in degree zero. Its DG modules are
then simply the complexes of R-modules, and the derived category D(R) coincides with the
derived category of R-modules.

3.4. Derived functors. For each DG A-module one sets

R HomA(M,−) = HomA(F,−) and
(− ⊗L

A M
)= (− ⊗A F),

where F → M is some semi-free resolution. This yields well defined exact functors on the de-
rived category of DG A-modules and right DG A-modules, respectively.

Given a subcategory C of D(A) and a DG A-module M we write thickn
A(C) and levelCA(M) in

place of thickn
D(A)(C) and levelCD(A)(M), respectively.

We record some easy consequences of general properties of levels.

3.5. Let A be a DG algebra, M a DG A-module, and C ⊆ D(A) a subcategory.

3.5.1. If M has a filtration by DG submodules

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M

then the following inequality holds:

levelCA(M) �
m∑

i=1

levelCA
(
Mi/Mi−1).

Indeed, this is seen through iterated applications of Lemma 2.4(2) to the triangles in D(A)

defined by the exact sequences of DG A-modules

0 → Mi−1 → Mi → Mi/Mi−1 → 0.

3.5.2. Let B be a DG algebra and L a left–right B–A-bimodule with H(L ⊗L
A C) a noetherian,

respectively, artinian, H(B)-module for each C ∈ C. If levelCA(M) is finite, then the H(B)-module
H(L ⊗L M) is noetherian, respectively, artinian.
A
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Indeed, as (L⊗L
A −) is an exact functor from D(A) to D(B), Lemma 2.4(6) shows that L⊗L

A M

has finite (L ⊗L
A C)-level, so the desired assertion follows from 2.1.5.

Next we consider how levels behave under changes of DG algebras.

3.6. Morphisms of DG algebras. Let ϕ :A → B be a morphism of DG algebras.
The following property is used implicitly in many arguments.

3.6.1. The map ϕ induces an adjoint pair of functors of triangulated categories

D(A)

(B⊗L
A−)

D(B)
ϕ∗

where ϕ∗ is the functor restricting the action of B to A. In particular, for every M ∈ D(A) and
every N ∈ D(B) there are canonical morphisms

M −→ ϕ∗
(
B ⊗L

A M
)

and B ⊗L
A ϕ∗(N) −→ N.

3.6.2. If ϕ is a quasi-isomorphism, then (B ⊗L
A −) and ϕ∗ are inverse equivalences.

Indeed, with U a semi-free resolution of the DG module M over A, see 3.2, the morphism
M → ϕ∗(B ⊗L

A M) is represented by ϕ ⊗A U ; it is a quasi-isomorphism since ϕ is one. Let
ν :V → N be a semi-free resolution of ϕ∗(N) over A. The morphism B ⊗L

A ϕ∗(N) → N is
represented by the morphism μ :B ⊗A V → N , where b ⊗ v �→ bν(v). The quasi-isomorphism
ν factors as

V
ϕ⊗AV−−−−→ B ⊗A V

μ−→ N.

Since V is semi-free, ϕ ⊗A V is a quasi-isomorphism, and hence so is μ.

3.6.3. Let M and N be DG modules over A and B , respectively, and let μ :M → N be a mor-
phism of complexes of abelian groups satisfying μ(am) = ϕ(a)μ(m) for all a ∈ A and m ∈ M .
If ϕ and μ are quasi-isomorphisms, then in D(A) and D(B), respectively, one has canonical
isomorphisms

M � ϕ∗(N) and B ⊗L
A M � N.

Indeed, M � ϕ∗(N) holds by assumption, so 3.6.2 yields isomorphisms

B ⊗L
A M � B ⊗L

A ϕ∗(N) � N.

Now we can track the behavior of levels under change of DG algebras.

Proposition 3.7. Let ϕ :A → B be a morphism of DG algebras.
For all DG A-modules C,M and all DG B-modules D,N the following hold.
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(1) There are inequalities

levelCA(M) � level
B⊗L

AC

B

(
B ⊗L

A AM
)
,

levelϕ∗(D)
A

(
ϕ∗(N)

)
� levelDB (N).

Equalities hold when ϕ is a quasi-isomorphism.
(2) If both levelAA(ϕ∗(B)) and levelBB(N) are finite, then so is levelAA(ϕ∗(N)).

Proof. (1) Lemma 2.4(6) yields the inequalities and shows that they become equalities if B ⊗L
A −

and ϕ∗ are equivalences; now refer to 3.6.2.
(2) Since levelBB(N) is finite, (1) shows that so is levelϕ∗(B)

A (ϕ∗(N)). It follows that ϕ∗(N) is
in thickA(ϕ∗(B)). As levelAA(ϕ∗(B)) is finite, one has an inclusion

thickA

(
ϕ∗(B)

)⊆ thickA(A).

Thus, ϕ∗(N) is in thickA(A), which means levelAA(ϕ∗(N)) is finite, as desired. �
The balance of this section deals with special properties of DG algebras concentrated either

in non-negative degrees or in non-positive degrees.

3.8. A DG algebra A is non-negative if it has An = 0 for all n < 0.
When A is a non-negative DG algebra the subcomplex

J = · · · −→ A2 −→ A1 −→ Im(∂1) −→ 0 −→ · · ·

is a DG ideal of A, and A/J is naturally isomorphic to H0(A). The morphism of DG algebras
ε :A → H0(A) is called the canonical augmentation of A. Via the functor ε∗ : D(H0(A)) →
D(A) we identify complexes of H0(A)-modules with DG A-modules; the same letter denotes a
complex in D(H0(A)) and its image in D(A).

Proposition 3.9. Let A and B be non-negative DG algebras.
If f : D(A) → D(B) is an equivalence of triangulated categories induced by a chain of quasi-

isomorphisms of DG algebras, then in D(B) one has an isomorphism

f
(
H0(A)

)� H0(B).

Proof. By hypothesis, there exists a sequence of quasi-isomorphisms

A
�

A0
�

A1
� · · · �

Ai−1
�

Ai
�

B

of DG algebras. For j = 0, . . . , i the subcomplex

A
j
+ = · · · −→ A

j −→ A
j −→ Ker

(
∂Aj )−→ 0 −→ · · ·
2 1 0
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is a functorially defined DG subalgebra of Aj , and the inclusion A
j
+ ⊆ Aj is a quasi-

isomorphism. Thus, the original sequence induces a commutative diagram

A
�

A0+
�

A1+
� · · · �

Ai−1+
�

Ai+
�

B

H0(A)
∼=

H0(A
0+)

∼=
H0(A

1+)
∼= · · · ∼=

H0(A
i−1+ )

∼=
H0(A

i+)
∼=

H0(B)

of isomorphisms of DG algebras, where all DG algebras in the top row are non-negative and all
vertical arrows are canonical augmentations. Iterated applications of 3.6.3 produce the desired
isomorphism in D(B). �
Proposition 3.10. Let A be a non-negative DG algebra.

For every DG A-module the following hold.

(1) If inf{n ∈ Z | Hn(M) �= 0} = i > −∞, then there is an exact triangle

M ′ −→ M −→ Σi
(
Hi (M)

)−→ ΣM ′

in D(A), with Hi (M
′) = 0 and Hn(M

′) ∼= Hn(M) for n �= i.
(2) For every class C of H0(A)-modules one has

levelCA(M) �
∑
n∈Z

levelCH0(A)

(
Hn(M)

)
.

Proof. (1) Since A is non-negative, the following subcomplexes

M ′ = · · · Mi+1 Im(∂i+1) 0 · · · ,

M ′′ = · · · Mi+1 Ker(∂i) 0 · · ·

of M are closed under multiplication by elements on A; in other words, they are DG submodules
of M . It remains to observe that the inclusion M ′′ ⊆ M is a quasi-isomorphism, and that one has
an exact sequence of DG A-modules

0 −→ M ′ −→ M ′′ −→ ΣiHi (M) −→ 0.

It gives rise to an exact triangle with the desired properties.
(2) We may assume that the number w(M) = card{n ∈ N | Hn(M) �= 0} is finite. As

w(M) = 0 means M � 0, the desired inequality is evident in this case, so we may assume that it
holds for DG modules N with w(N) < r for some r � 1.

Set i = inf{n | Hn(M) �= 0}. Lemma 2.4(2) applied to the exact triangle in (1) and Lem-
ma 2.4(1) yield the first relation below:
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levelCA(M) � levelCA
(
Hi (M)

)+ levelCA(M ′)

� levelCH0A

(
Hi (M)

)+ levelCA(M ′)

� levelCH0A

(
Hi (M)

)+ ∑
n�i+1

levelCH0A

(
Hn(M

′)
)

=
∑
n�i

levelCH0A

(
Hn(M)

)
.

Proposition 3.7(1), applied to the morphism ε :A → H0(A), yields the second one. As w(M ′) =
r − 1 by part (1), the third inequality is the induction hypothesis. The equality uses the expres-
sions for the modules Hn(M

′), again from (1). �
3.11. A DG algebra A with An = 0 for n > 0 is said to be non-positive. Such a DG algebra has
no augmentation to H0(A) in general. However, the subcomplex

J = · · · −→ 0 −→ A−1 −→ A−2 −→ · · ·

is a DG ideal of A. Thus, when ∂(A0) = 0 one has natural isomorphisms A/J ∼= A0 ∼= H0(A),
and hence a canonical augmentation ε :A → H0(A). As in 3.8, for every complex M ∈ D(H0(A))

we let M denote also the DG A-module ε∗(M).

Proposition 3.12. If A is a non-positive DG algebra with ∂(A0) = 0 and A0 semi-simple, and M

is a DG A-module, then the following hold.

(1) If sup{n ∈ Z | Hn(M) �= 0} = s < ∞, then there is an exact triangle

M ′ −→ M −→ ΣsHs(M) −→ ΣM ′

in D(A), with Hs(M
′) = 0 and Hn(M

′) ∼= Hn(M) for n �= s.
(2) For every class C of H0(A)-modules one has

levelCA(M) �
∑
n∈Z

levelCH0A

(
Hn(M)

)
.

Proof. (1) The hypothesis ∂(A0) = 0 implies ∂M is A0-linear. As A0 is semi-simple,

0 −→ Ker(∂s) −→ Ms −→ Im(∂s) −→ 0,

0 −→ Im(∂s+1) −→ Ker(∂s) −→ Hs(M) −→ 0

are split-exact sequences of A0-modules. Thus, there are isomorphisms

Ms
∼= Im(∂s+1) ⊕ Hs(M) ⊕ C and C ∼= Im(∂s)
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of A0-modules, the latter induced by ∂s . As A is non-positive,

M ′ = · · · 0 C
∂s

Ms−1 · · · ,

M ′′ = · · · 0 Hs(M) ⊕ C
∂s

Ms−1 · · ·

are DG A-submodules of M and there is an exact sequence of DG A-modules

0 −→ M ′ −→ M ′′ −→ ΣsHs(M) −→ 0.

The inclusion M ′′ ⊆ M is a quasi-isomorphism, so it yields the desired exact triangle; the ho-
mology of M ′ is computed from the homology exact sequence.

(2) follows from (1) by an argument parallel to that for Proposition 3.10(2). �
4. Perfect DG modules

We say that a DG module M over a DG algebra A is perfect if levelAA(M) is finite. The first
result of this section describes the structure of perfect DG modules. Specialized to the case of
rings it shows that our terminology is consistent with the traditional notion for complexes, see
2.5. We extend this characterization to DG modules over non-negative DG algebras.

Over certain DG algebras which arise in many applications we establish a homological and
hence verifiable criterion for perfection. We finish the section with examples showing that the
hypotheses of this last result cannot be relaxed easily.

4.1. Semi-freeness. A semi-free filtration of a DG A-module F is a family (F n)n∈Z of DG A-
submodules satisfying the conditions in 3.1. Such a filtration (F n)n∈Z has class at most l if
F l = F holds for some integer l; it is finite if, in addition, its subquotients are finitely generated.

A DG A-module admitting a (finite) semi-free filtration (of class at most l) is said to be
( finite) semi-free (of class at most l). Note that 0 is the only DG module that is semi-free of class
at most −1.

The next theorem suggests that the A-level of a DG A-module may be thought of as a kind of
‘projective dimension’.

Theorem 4.2. Let A be a DG algebra and l a non-negative integer.
A DG A-module M has levelAA(M) � l if and only if it is a retract of some finite semi-free DG

module of class at most l − 1.

Proof. Let F denote the full subcategory addΣ(A) of D(A); its objects are the DG modules
isomorphic to finite direct sums of suspended copies of A, see 2.1.1. In view of 2.2.1, it suffices
to prove that F�l is the smallest strict subcategory of D(A) that contains all finite semi-free DG
modules of class at most l − 1.

Indeed, a semi-free filtration (F n)n∈Z of class at most l − 1 yields exact triangles

Fn−1 −→ Fn −→ Fn/Fn−1 −→ ΣFn−1 for 1 � n � l − 1.

Since F 0 and Fn/Fn−1 are in F, induction shows that F is in F�l .
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Conversely, assume that M is in F�l for some l � 0. By induction on l we prove that M is
isomorphic to a finite semi-free DG module F of class at most l − 1. For l = 0 the assertion is
evident. For l � 1 one has in D(A) an exact triangle

G
γ−→ L −→ M −→ ΣG

with L in F(l−1)� and G in F. By the induction hypothesis, L is isomorphic to a DG A-module
with a finite semi-free filtration of class l − 2. Thus, there is an exact triangle as above, where L

has a finite semi-free filtration (Ln) with Ll−2 = L.
Since G is in F, the triangle above is isomorphic to a triangle

G̃
γ̃−−→ L −→ M −→ ΣG̃

where G̃ is a finite direct sum of suspended copies of A. Set F = cone(γ̃ ). One then has M � F

and an exact sequence of DG A-modules

0 −→ L
λ−→ F −→ ΣG̃ −→ 0.

One gets a finite semi-free filtration of F with F l−1 = F by setting

Fn =
{

λ(Ln) for n � l − 2;
F for n � l − 1.

It shows that the class of F is at most l − 1, as desired. �
By Theorem 4.2 a DG A-module M of finite A-level is isomorphic in D(A) to a DG module P

with P 
 finite projective over A
. Next we prove that the converse holds when A is non-negative,
in particular, when M is a complex over a ring.

In the argument, we use the following classical fact on the structure of graded projective
modules over graded rings; see [38, 6.6].

4.3. Let B be a non-negatively (respectively, non-positively) graded algebra.
For each bounded below (respectively, bounded above) projective graded B-module N there

is an isomorphism of graded B-modules N ∼= V ⊗B0 B , with V a bounded below (respectively,
bounded above) projective graded B0-module.

The B0-module V is defined uniquely up to isomorphism: V ∼= (B/J )⊗B N , where J denotes
the ideal of elements of positive (respectively, negative) degree.

Proposition 4.4. Let A be a non-negative DG algebra.
A bounded below DG A-module M is a direct summand of some (finite) semi-free DG A-

module if and only if the underlying graded A
-module is (finite) projective.

Proof. The ‘only if’ part is evident. For the converse, set R = A0. By 4.3, one has M
 ∼= V ⊗R A


for some bounded below graded R-module V with each Vn projective. Pick for each n ∈ Z an
R-module Wn so that Vn ⊕Wn is free. If M
 is finite over A
, each Vn is finite over R, so choose
Wn finite, as one may. Let W be the complex of R-modules having Wn as nth component and
∂W = 0.
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Form the DG A-module F = M ⊕ (W ⊗R A). As A is non-negative,

Fn = (V ⊕ W)�n ⊗R A

is a DG submodule of F , and · · · ⊆ Fn ⊆ Fn+1 ⊆ · · · is a semi-free filtration of F ; it is finite
when the R-module W is finite. �

Theorem 4.2 and Proposition 4.4 yield:

Corollary 4.5. A DG module over a non-negative DG algebra A is perfect if it is quasi-
isomorphic to a DG module P with P 
 finite projective over A
.

From the preceding corollary and Proposition 3.7(2) one gets:

Corollary 4.6. Let ϕ :A → B be a morphism of DG algebras such that A is non-negative and
the graded A
-module ϕ∗(B)
 is finite projective.

If N is a perfect DG B-module, then the DG A-module ϕ∗(N) is perfect.

Our next goal is to obtain a homological criterion for perfection. We start by noting that 3.5.2
applied to the class C = {A} gives a homological obstruction:

Remark 4.7. Let A and B be DG algebras, L a left–right B–A-bimodule, and M a perfect DG
A-module.

If the graded H(B)-module H(L) is noetherian (respectively, artinian) then the graded H(B)-
module H(L ⊗L

A M) is noetherian (respectively, artinian).

Under additional hypotheses, we prove that finiteness is the only obstruction; for the definition
of the canonical augmentation, see Remarks 3.8 and 3.11.

Theorem 4.8. Let A be a DG algebra and M a DG A-module, such that

(a) A is non-negative, ∂(A1) = 0, and H(M) is bounded below; or
(b) A is non-positive, A−1 = 0, and H(M) is bounded above.

Set k = A0 and let ε :A → H0(A) = k denote the canonical augmentation.
If k is a field, then the following conditions are equivalent.

(i) M is perfect over A.
(ii) H(k ⊗L

A M) is finite over k.
(iii) M � F for some finite semi-free F ∈ D(A).
(iv) M � F for some F ∈ D(A) with F
 a finite projective graded A
-module.

When they are satisfied, the inequality below holds:

levelAA(M) � card
{
n ∈ Z

∣∣Hn

(
k ⊗L

A M
) �= 0

}
.

In our argument, we use the existence of minimal semi-free resolutions, see [7]:
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4.9. Minimal resolutions. Let A be a DG algebra, and M a DG A-module, as in Theorem 4.8.
Assume H0(A) is a field. Set J = {a ∈ A: |a| �= 0}; this is a DG ideal of A, and there exists a
semi-free resolution F → M with the property ∂(F ) ⊆ JF .

Proof of Theorem 4.8. Set J = Ker(ε).
(i) �⇒ (iv). This follows from Theorem 4.2.
(iv) �⇒ (iii). By 4.3 the A
-module F
 is free. We induce on r = rankA
 F 
.
For r = 0 the assertion is obvious. Fix r � 1 and assume that the assertion holds for all DG

modules with underlying graded module of smaller rank. Choose a non-zero element e of F ,
with |e| minimal in case (a) and maximal in case (b). One can then find a basis {e1, . . . , er} of F


over A
, with e1 = e.
If ∂(e) = 0, then F = F/Ae is a DG A-module with (F )
 free of rank r − 1, so by the

induction hypothesis it has a finite semi-free filtration (F
n
). Setting F 0 = Ae and letting Fn

denote the inverse image in F of Fn−1 for n � 1, we obtain a finite semi-free filtration of F .
This covers case (a), as well as case (b) for r = 1.

Finally, assume (b) holds, r � 2, and ∂(e) = f �= 0. Set |e| = j and J = A�−2. As |f | =
j − 1, and (JF )i = 0 for i � j − 1, we get f /∈ JF . By Nakayama’s Lemma F
 has a basis
{e1, . . . , er} with e1 = e and e2 = f . The graded submodule E
 of F generated by e and f is a
DG submodule, and has H(E) = 0. The exact sequence of DG modules 0 → E → F → F/E →
0 yields a quasi-isomorphism F � F/E and shows that (F/E)
 is free of rank r − 2 over A
.
Thus we get M � F/E in D(A), and the induction hypothesis implies that F/E is semi-free.

(iii) �⇒ (ii). This is due to the isomorphism H(k ⊗L
A M) ∼= H(k ⊗A F).

(ii) �⇒ (i). It suffices to show that (ii) implies the inequality in the statement of the theorem.
Setting V = H(k ⊗L

A M) we argue by induction on v = rankk V .
Choose a quasi-isomorphism F → M with F a semi-free DG A-module and ∂(F ) ⊆ JF ; see

4.9. One then has isomorphisms of graded k-vector spaces

k ⊗A F = H(k ⊗A F) ∼= H
(
k ⊗L

A M
)= V.

From 4.3 one gets F
 ∼= V ⊗k A
. In particular, v = 0 implies F = 0, and hence levelAA(F ) = 0.
This is the basis for our induction.

Assume v � 1. For i = inf{n ∈ Z | Vn �= 0} and s = sup{n ∈ Z | Vn �= 0} we have

∂(Vi ⊗k 1) ⊆ (V ⊗k A�1)i−1 = 0 in case (a);
∂(Vs ⊗k 1) ⊆ (V ⊗k A�−1)s−1 = Vs ⊗k A−1 = 0 in case (b).

Setting j = i in case (a) and j = s in case (b), we get an exact sequence

0 −→ (
ΣjVj

)⊗k A −→ F −→ G −→ 0

of DG A-modules. The homology exact sequence of the functor (k ⊗L
A −) splits:

0 −→ ΣjVj −→ V −→ H
(
k ⊗L

A G
)−→ 0.

In particular, we get rankk H(k ⊗L
A G) < v. The DG module G is bounded below in case (a) and

above in case (b), so the induction hypothesis applies to it. Since levelAA(V ⊗k A) = 1 holds by
definition, 3.5.1 yields the inequality below:
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levelAA(M) = levelAA(F )

� 1 + levelAA(G)

= 1 + card
{
n ∈ Z

∣∣Hn

(
k ⊗L

A G
) �= 0

}
= card

{
n ∈ Z

∣∣Hn

(
k ⊗L

A M
) �= 0

}
.

The last equality comes from the homology exact sequence above. �
Remark 4.10. The proof above depends on the existence of minimal semi-free resolutions, which
are more widely available. For example, when A is non-negative and M is bounded below they
exist if the ring A0 is artinian, and also if A0 is local, H(A) is noetherian, and H(M) is finite over
H(A). Minor modifications in our arguments extend to these cases the validity of the theorem.

In the sequel we use only the following special case.

Proposition 4.11. Let A be a DG algebra with zero differential and let M be a DG A-module,
such that there is an isomorphism M � H(M) in D(A).

If A is non-negative or non-positive, and the ring A0 is artinian and local, then M is perfect
if and only if the graded A
-module H(M) has a finite free resolution.

Proof. Let k denote the residue field of A0 and J the kernel of the canonical augmentation
A → k. The graded A
-module N = H(M) has a minimal free resolution

F • = · · · −→ F i δi−→ F i−1 −→ · · · −→ F 0 −→ 0 −→ · · ·
where each δi is a homomorphism of degree 0 and satisfies δi(F i) ⊆ JF i−1, see [20, 15 and
§4]. Totaling the complex F • one gets a DG A-module F with F
 =∐∞

i=0 Σ
iF i and ∂(F ) ⊆

JF . It comes with a quasi-isomorphism F → N and a semi-free filtration (F n)n∈Z with Fn
 =∐n
i=0 Σ

iF i . If N has a finite free resolution G•, then F • is isomorphic to as a direct summand of
G• by [20, 8], and hence N is perfect by Theorem 4.2. Conversely, if levelAA(M) is finite, then
3.5.2 implies that the graded k-vector space H(k ⊗L

A M) has finite rank. The isomorphisms

H
(
k ⊗L

A M
)∼= H

(
k ⊗L

A N
)∼= H(k ⊗A F) =

∞∐
i=0

Σi
(
k ⊗A F i

)
yield rankk H(k ⊗L

A M) =∑∞
i=0 rankA F i , so F • is a finite free resolution. �

We conclude with examples that show that for non-positive algebras condition (b) in Theo-
rem 4.8 cannot be relaxed significantly; compare with Remark 4.10.

Examples 4.12. Let k be a field and A a DG algebra with

A
 = k[y, z]/(y2, yz, z2) and ∂A = 0,

where y and z are indeterminates over k. The exact sequence

0 −→ Σ|y|ky ⊕ Σ|z|kz −→ A −→ k −→ 0
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implies that in every minimal free resolution F • of the graded A
-module k one has rankA F i =
2i for each i � 0; by Proposition 4.11, this yields

levelAA(k) = ∞.

4.12.1. For |y| = −1 = |z| one has A0 = k and A−1 �= 0.
Let M be the DG module with M
 = A and ∂(a) = ya.
The graded A
-module M
 is free of rank 1, and one has levelAA(M) = ∞.

Indeed, the map Σ−1k → M sending σ−1(1) to z is a quasi-isomorphism of DG A-modules,
so one has levelAA(M) = levelAA(k) = ∞.

4.12.2. For |y| = 0 and |z| = −2 one has A0 �= k and A−1 = 0.
Let M be the DG module with M
 = A ⊕ Σ−1A and ∂(a,σ−1(b))= (zb,σ−1(ya)).
The graded A
-module M
 is free of rank 2, and one has levelAA(M) = ∞.

Indeed, the map (a, σ−3(b)) �→ (ya,σ−1(zb)) is a quasi-isomorphism of DG A-modules k ⊕
Σ−3k → M , which yields levelAA(M) = levelAA(k ⊕ Σ−3k) = ∞.

5. A New Intersection Theorem for DG algebras

The New Intersection Theorem is a central result in the homological theory of commutative
noetherian rings. Here we generalize it to certain DG modules, using Hochster’s notion of super
height of an ideal I in a commutative ring R:

super height I = sup

{
height(IS)

∣∣∣ R → S is a homomorphism
of rings and S is noetherian

}
.

Evidently, when R is noetherian one has that super height I � height I .

Theorem 5.1. Let A be a DG algebra with zero differential, let M be a DG module over A, and
let I denote the annihilator of

⊕
n∈Z

Hn(M) in the ring A� =⊕n∈Z
An.

If A� is commutative and noetherian and is an algebra over a field, then one has

levelAA(M) � super height I + 1.

When the ring A� is Cohen–Macaulay, or when its dimension is at most 3, one has

levelAA(M) � height I + 1.

Addendum. Whenever A� is commutative and noetherian, one has

levelAA(M) � super height I.

For the next remark, recall that a ring is just a DG algebra concentrated in degree 0, and a DG
module over a ring is nothing but a complex.
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Remark 5.2. We recall the statement of the New Intersection Theorem:
In a bounded complex P of finite free modules with non-zero homology of finite length over

a local ring R one has Pn �= 0 for at least (dimR + 1) values of n.
For algebras over a field it is due to Peskine and Szpiro [29], P. Roberts [31], and

Hochster [22]; this case follows from Theorem 5.1, because Example 2.5.3 yields

card{n ∈ Z | Pn �= 0} � levelRR(P ).

However, we do not recover the New Intersection Theorem over arbitrary local rings, proved by
Roberts; see [31]. The reason is that in the proof of Theorem 5.1 we need a result from [6], which
uses Hochster’s [22] big Cohen–Macaulay modules.

Over the rings it covers, Theorem 5.1 may provide a significantly sharper bound on heights
than the one given by the New Intersection Theorem, as the difference card{n | Fn �= 0} −
levelAA(F ) can be arbitrarily large, even when R is very nice:

Example 5.3. Let (R,m, k) be a regular local ring of dimension d � 2 and l an integer, l � d .
Let I be an m-primary ideal minimally generated by l elements; one always exists. The Koszul
complex F on a minimal generating set for I has

levelRR(F ) = d + 1 and card{n | Fn �= 0} = l + 1.

Indeed, the equality on the right reflects the construction of F . Theorem 5.1 yields
levelRR(F ) � d + 1, because AnnR H(K) = I and height I = d . On the other hand, F is quasi-
isomorphic to the complex D obtained by totaling its Cartan–Eilenberg resolution C. Since
gl dimR = d , by [15, XVII.1.4] one can choose C to have d + 1 columns; this yields a semi-free
filtration of D of class at most d .

A consequence of the New Intersection Theorem is that a local ring with a non-zero module
of finite length and finite projective dimension is Cohen–Macaulay. Using this and the argument
above, one can prove a stronger statement:

Remark 5.4. If M is a complex over a local ring R and the module
⊕

n Hn(M) has non-zero
finite length and finite projective dimension, then levelRR(M) = dimR + 1.

The next result provides an upper bound for A-levels that, together with Theorem 5.1, com-
pletes the proof of Theorem 4 from the introduction.

Recall that a graded algebra is said to be coherent if finite graded submodules of finitely
presented graded modules are also finitely presented.

Theorem 5.5. Let A be a DG algebra with zero differential, which is left coherent as a graded
ring, and let M be a DG A-module.

If H(M) is finitely presented over A, then the following inequalities hold:

levelAA(M) � proj dimA H(M) + 1 � gl dimA + 1.
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Remark 5.6. The second inequality in Theorem 5.5 holds by definition.
When A is a ring and M is an A-module, Krause and Kussin [26, 2.4] prove that the first

inequality in Theorem 5.5 becomes an equality.

In view of the Syzygy Theorem, Theorems 5.1 and 5.5 yield:

Corollary 5.7. Let S be a graded polynomial algebra in c indeterminates over a field k with
∂S = 0. Each DG S-module M with rankk H(M) �= 0,∞ satisfies

levelSS(M) = c + 1.

Proof of Theorem 5.5. It suffices to deal with the case proj dimA H(M) = p < ∞.
When p = 0 the graded A-module H(M) is projective. As A has zero differential, the cy-

cles of M form a graded A-submodule Z(M), and the canonical surjection Z(M) → H(M) is
an A-linear map. Choosing an A-linear splitting σ : H(M) → Z(M) and composing it with the
inclusion Z(M) ⊆ M one gets a quasi-isomorphism H(M) → M . The DG module H(M) is a di-
rect summand of some finite free graded A-module, so in D(A) one has H(M) ∈ addΣ(A). Thus,
one has

levelAA(M) = levelAA
(
H(M)

)
� 1.

Let now p be a positive integer, and assume that the desired inequality holds for all DG A-
modules whose homology has projective dimension strictly smaller than p. In M , pick cycles
z1, . . . , zs whose homology classes generate H(M), set L =⊕s

i=1 Σ
|zi |A. The map of graded A-

modules λ :L → M that sends 1 ∈ Σ|zi |A to zi is a morphism of DG A-modules. In D(A) it fits
into an exact triangle L

λ−→ M
μ−→ N → ΣL. In the induced exact sequence of graded A-modules

Σ−1H(M)
Σ−1H(μ)−−−−−→ Σ−1H(N) −→ H(L)

H(λ)−−−→ H(M)
H(μ)−−−→ H(N)

the map H(λ) is surjective by construction. This implies H(μ) = 0 = Σ−1H(μ), so the exact
sequence shows that H(N) is finitely presented over A, and one has proj dimA H(N) = p − 1.
From the induction hypothesis we now obtain levelAA(N) � p, hence we get levelAA(M) � p + 1
from Lemma 2.4(2). �

In order to obtain lower bounds in Theorem 5.1 on A-levels of DG A-modules we use our
recent results on invariants of a related structure, which we define next.

5.8. Differential modules. Let R be an associative ring.
A differential R-module is a pair (D, δ), where D is an R-module and δ :D → D an R-linear

map with δ2 = 0; the module H(D) = Ker(δ)/ Im(δ) is the homology of D. Every module M

supports a differential module (M,0), also called M .
A projective flag in a differential R-module D is a family (Dn)n∈Z of differential R-

submodules of D, such that for each n ∈ Z the following hold:

Dn ⊆ Dn+1, D−1 = 0,
⋃
n∈Z

Dn = D, and

Dn/Dn−1 ∼= (Pn,0) for some projective R-module Pn.
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In [6, 2.8] the projective class of D is defined to be the number

proj classR D = inf

{
l ∈ Z

∣∣∣ D admits a projective flag
(Dn)n∈Z with Dl = D

}
.

The statement below is one of the main results of [6]:

5.9. Class Inequality. If R is a commutative noetherian ring, F a finitely generated differential
R-module, D a retract of F , and I = AnnR H(D), then one has

proj classR F � super height I − 1,

with strict inequality when R is an algebra over a field; see [6, 4.2]. Moreover, when dimR � 3
or R is Cohen–Macaulay [6, 4.1] yields an inequality

proj classR F � height I.

There is an obvious parallel between the notion of semi-free filtration for DG modules and
that of projective flag for differential modules. Under additional conditions we turn it into a direct
comparison, by using the following construction.

5.10. DG algebras with zero differential. Let A be a DG algebra with ∂A = 0.
Using the product of the graded algebra A one defines an associative ring

A� =
⊕
n∈Z

An,

and then to each DG A-module M one associates a differential A�-module

M� =
(⊕

n∈Z

Mn,
⊕
n∈Z

(−1)n∂M
n

)
.

The simplicity of the construction notwithstanding, a couple of caveats may be in order: The
signs appearing in the formula for the differential of M� are necessary to ensure that it is A�-
linear. The action of A� on M� respects the obvious internal gradings of these objects, but the
differential of M� need not.

Lemma 5.11. Let A be a DG algebra with trivial differential.
The assignment M �→ M� defines an exact functor from the abelian category of DG A-

modules to that of differential A�-modules. It preserves finite generation and transforms semi-free
filtrations into projective flags.

If F is a semi-free DG A-module of class at most c, then one has

c � proj classA�

(
F�
)
.

Proof. The first two assertions are evident from the definitions and constructions preceding the
lemma. If (F n) is a semi-free filtration of F with Fc = F , then ((F �)n) is a projective flag with
(F �)c = F�: this gives the inequality above. �
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Proof of Theorem 5.1. Set levelAA(M) = l. We may assume that l is finite.
Theorem 4.2 shows that M is isomorphic, in D(A), to a retract of some finite semi-free DG

A-module F of class l − 1. Levels do not change under isomorphisms, so we may assume that
M itself is a direct summand of F . In that case M� is a retract of F�, and the A�-module F� is
finite. Thus, Lemma 5.11 yields

l − 1 � proj classA�

(
F�
)
.

To finish the proof, invoke the Class Inequality from 5.9. �
6. Levels and semi-simplicity

In this section we analyze levels of DG modules related to two classical notions of length for
modules over rings.

6.1. Restricted lengths of modules. Let S be a ring and C a finite non-empty set of simple S-
modules. A C-filtration of an S-module N is a sequence of submodules

0 = N0 � N1 � · · · � Nl = N

where every Ni/Ni−1 is isomorphic to a direct sum of modules from C.
The C-length of N , denoted �

C
S (N), is the largest integer l for which N has a C-filtration with

Nl = N ; when no such filtration exists we set �
C
S (N) = ∞.

The C-Loewy length of N , denoted ��C
S (N), is the least integer l for which N has a C-filtration

with Nl = N ; when none exists we set ��C
S (N) = ∞.

6.1.1. For each exact sequence 0 → N ′ → N → N ′′ → 0 of S-modules one has

�
C
S (N) = �

C
S (N ′) + �

C
S (N ′′), (6.1.1.1)

��C
S (N) � ��C

S (N ′) + ��C
S (N ′′), (6.1.1.2)

��C
S (N) � max

{
��C

S (N ′), ��C
S (N ′′)

}
(6.1.1.3)

with equality in (6.1.1.3) when the sequence splits. From here one gets

��C
S (N) � ��C

S (S). (6.1.1.4)

Lemma 6.1.2. Let N be an S-module.
If �

C
S (N) is finite, then so is ��C

S (N).
When N is noetherian the converse holds as well.

Proof. By definition, one has ��C
S (N) � �

C
S (N), whence the first assertion. For the converse,

assume ��C
S (N) = l < ∞ and fix a filtration

0 = N0 � N1 � · · · � Nl = N
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where each Ni/Ni−1 a direct sum of simple modules from C. When N is noetherian each direct
sum is finite, so N has finite C-length. �

Recall that S is semi-local if it has finitely many isomorphism classes of simple modules;
equivalently, if S/n, where n is the Jacobson radical, is semi-simple.

6.1.3. Let S be a semi-local ring, let n denote its Jacobson radical, and let C contain representa-
tives of every isomorphism class of simple S-modules. The C-length and C-Loewy length of N

are then equal to their classical counterparts, denoted �S N and ��SN , respectively. Furthermore,
one has

��SN = inf
{
n ∈ N

∣∣ nnN = 0
}= inf

{
n ∈ N

∣∣ (0 : nn
)
N

= N
}
.

Now we return to DG algebras. As in 3.8 and 3.11, we use canonical augmentations ε :A →
H0(A) to identify H0(A)-modules with DG A-modules.

Parts (3) and (4) of the next result contain Proposition 5 from the introduction.

Theorem 6.2. Let A be a non-negative DG algebra. Set S = H0(A), let C be a finite set of simple
S-modules, and set k =⊕N∈C N .

For each DG A-module M the following statements hold.

(1) levelkA(M) = levelCA(M).
(2) levelkA(M) � maxn∈Z{��C

S (Hn(M))}.
(3) The numbers levelkA(M) and �

C
S (H(M)) are finite simultaneously; when they are, they are

linked by the following inequality:

levelkA(M) �
∑
n∈Z

��C
S

(
Hn(M)

)
.

(4) If N is an S-module and �
C
S (N) is finite, then one has

levelkA(N) = ��C
S (N).

Proof. (1) This follows from the equality smd(addΣ(k)) = smd(addΣ(C)) in D(S).
(2) We may assume levelkA(M) = l < ∞. By (1) and 2.2.1, this means that M is a direct

summand of a complex L ∈ addΣ(C)
�l

. When l = 1 one may assume that each Li is a fi-
nite direct sum of modules from C; then so is each Hi (L), and thus ��C

S (Hi (L)) � 1. For
l � 2 there is an exact triangle L′ → L → L′′ → ΣL′ in D(S) with levelkA(L′) � l − 1 and
levelkA(L′′) � 1. It induces an exact sequence Hi (L

′) → Hi (L) → Hi (L
′′) of S-modules. In-

duction and sub-additivity, see (6.1.1.2), yield ��C
S (Hi (L)) � l. Thus, one gets ��C

S (Hi (M)) � l.
(3) It is easy to verify that the subcategory of DG A-modules M , such that �

k
S(H(M)) is finite,

is thick. It contains k, hence also thickA(k). Thus, when levelkA(M) is finite, so is �
C
S (H(M)), see

2.1.5. One now has

levelkA(M) �
∑

levelkS
(
Hn(M)

)

n∈Z
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from Proposition 3.10. To finish, for each S-module N of finite C-length we prove:

levelkS(N) � ��C
S (N).

Indeed, N has a filtration by submodules with N0 = 0, Nl = N for l = ��C
S (N), and each

Ni/Ni−1 a direct sum of modules from C. The sums are finite because �
C
S (N) is, so each

Ni/Ni−1 has C-level 1. Thus 3.5.1 yields levelkS(N) � l.
(4) This is a formal consequence of (2) and (3). �
We pause to remark that the finiteness hypothesis in Theorem 6.2(4), as well as the noetherian

hypothesis in Lemma 6.1.2 are essential:

Example 6.3. When k is a simple S-module the module N = k(N) satisfies

��k
S(N) = 1 < ∞ = levelkS(N) = �

k
S(N).

More precise conclusions can be made when H0(A) is semi-simple.

Theorem 6.4. Let A be a DG algebra satisfying one of the conditions below:

(a) A is non-negative.
(b) A is non-positive and ∂(A0) = 0.

Set S = H0(A) and assume that the ring S is semi-simple.
For a DG A-module M the number levelSA(M) is finite if and only if the S-module H(M) is

finitely generated; when it is, the following inequality holds:

levelSA(M) � card
{
n ∈ Z

∣∣Hn(M) �= 0
}
.

Proof. The semi-simple ring S is noetherian. Let C be a set of representatives of the isomorphism
classes of simple S-modules, and note that C is finite.

If levelSA(M) is finite, then the S-module H(M) is noetherian; see 3.5.2.
Conversely, assume that the graded S-module H(M) is finitely generated. It is isomorphic to

a direct sum of suspensions of modules from C, so for each n ∈ Z one has Hn(M) �= 0 if and
only if levelSS(Hn(M)) = 1. The desired inequality follows from Proposition 3.10(2) in case (a)
and from Proposition 3.12(2) in case (b). �

The next two results link the structure of a semi-local ring to k-levels.

Proposition 6.5. Let S be a left artinian ring and n its Jacobson radical.
If M is a complex of S-modules with H(M) finitely generated, then one has

levelS/n
S (M) � ��SS.

Proof. Replacing M , if necessary, by a quasi-isomorphic complex, we may assume that M is a
bounded complex of finite S-modules. Since nl = 0 for l = ��SS, setting Mi = nl−iM we get
a filtration of M by subcomplexes with M0 = 0, Ml = M and Mi/Mi−1 a bounded complex
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of finite semi-simple S-modules for i = 0, . . . , l. In D(S) such a complex is quasi-isomorphic
to its homology. The latter, being a bounded complex of finite semi-simple modules with trivial
differential, has k-level 1 by definition. Thus 3.5.1 now yields levelS/n

S (M) � l, as desired. �
Proposition 6.6. For a local ring (R,m, k) the following conditions are equivalent.

(i) The ring R is regular.
(ii) There exists a finite free complex of k-level 1.

(iii) The Koszul complex K on a minimal set of generators of m has k-level 1.

Proof. When R is regular in D(R) one has K � k, hence levelkR(K) = 1.
Let F be a finite free complex with levelkR(F ) = 1. By definition, in D(R) one then has F � V ,

where V is a complex of k-vector spaces with rankk H(V ) finite non-zero. As k is a retract of
ΣsV for some s ∈ Z, in D(R) it is also a retract of ΣsF , and so is quasi-isomorphic to a finite free
complex. This means that the R-module k has finite projective dimension, hence R is regular;
see [12, 2.2.7]. �

We finish the section with examples of strict inequalities in the preceding results.

Example 6.7. Let (R,m, k) be a local ring and K the Koszul complex on a minimal set of genera-
tors of m. Each module Hn(K) is a vector space over k, and so has k-level 1; see Theorem 6.2(4).
When R is singular, one gets the inequality below

levelkR(K) > 1 = max
n∈Z

{
��k

R

(
Hn(K)

)}
,

so the inequality in Theorem 6.2(2) can be strict. On the other hand, Hn(K) �= 0 holds precisely
when n satisfies 0 � n � edimR − depthR, so one has∑

n∈Z

��k
R

(
Hn(K)

)= card
{
n ∈ Z

∣∣Hn(K) �= 0
}= edimR − depthR + 1.

The number on the right-hand side is independent of ��RR, so by fixing one and varying the other
it is easy to conjure artinian local rings for which a strict inequality holds in Theorem 6.2(3),
Theorem 6.4, or Proposition 6.5.

7. Perfect DG modules over exterior algebras

Our goal is to prove a slightly enhanced version of Theorem 6 in the introduction. It is an
algebraic analogue of, and can be used to deduce, [2, 4.4.5], which is a statement about the toral
rank of spaces.

Theorem 7.1. Let k be a field and Λ a DG k-algebra with ∂Λ = 0 and Λ
 an exterior algebra
on c alternating indeterminates of positive odd degrees.

For every perfect DG Λ-module N with H(N) �= 0 one then has

levelkΛ(N) = c + 1 � card
{
n ∈ Z

∣∣Hn(N) �= 0
}
.
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It will be deduced from Corollary 5.7 by using equivalences between certain thick sub-
categories of D(Λ) and D(S), where S is a graded polynomial ring in c indeterminates
over k. The prototype of such results is a classical theorem of J. Bernstein, I.M. Gelfand, and
S.I. Gelfand [10], dealing with subcategories of the derived category of graded modules over
these graded algebras. The situation here is different. We provide a self-contained treatment,
as none of the results that we have located in the literature covers it with the detail and in the
generality that we need; see Remarks 7.7 and 7.8.

7.2. Let k be a field and let c be a non-negative integer.
Let Λ be the DG algebra with ∂Λ = 0 and Λ
 an exterior algebra on alternating indeterminates

ξ1, . . . , ξc of positive odd degrees.
Let S denote the DG algebra with ∂S = 0 and S
 a polynomial ring on commuting indetermi-

nates x1, . . . , xc, with |xi | = −|ξi | − 1 for i = 1, . . . , c.
Set (−)∗ = Homk(−, k), viewed as a functor on the category of complexes of k-vector spaces;

see Section 3. The DG algebras S and Λ are graded commutative, so for every DG module L

over either one of them the complex L∗ of k-vector spaces carries a canonical structure of DG
module over the same DG algebra.

7.3. As S and Λ are graded commutative with elements of odd degree squaring to zero, the DG
algebra Λ ⊗k S has the same property. In particular,

δ =
c∑

h=1

ξh ⊗ xh ∈ (Λ ⊗k S)−1 satisfies δ2 = 0.

Let E be a DG (Λ ⊗k S)-module. An elementary calculation shows that the map

∂ :E → E defined by ∂(e) = ∂E(e) + δ · e

for all e ∈ E is k-linear of degree −1, and satisfies ∂2 = 0 and ∂(ae) = (−1)|a|a∂(e) for all
a ∈ Λ ⊗k S. Thus, Eδ = (E
, ∂) is a DG (Λ ⊗k S)-module.

For the DG Λ-module Λ∗, see 7.2, and the DG S-module S, the tensor product Λ∗ ⊗k S is
naturally a DG module with zero differential over Λ ⊗k S. Set

X = (Λ∗ ⊗k S
)δ

.

The next result provides the last ingredient needed in the proof of Theorem 7.1.

Theorem 7.4. Let X be the DG module described above. The functors

t = X ⊗S − and h = HomΛ

(
X∗,−)

induce an adjoint pair (t,h) of exact functors of triangulated categories.
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They restrict to inverse equivalences of triangulated categories:

D(S)
t

⋃ |

D(Λ)
h ⋃ |

thickS(S)
≡

⋃ |

thickΛ(k)⋃ |

thickS(k)
≡

thickΛ(Λ)

(7.4.1)

For d = |ξ1| + · · · + |ξc| there are isomorphisms in D(S) and D(Λ), respectively:

h(Λ) � Σdk,

h(k) � S
and

t(k) � Σ−dΛ,

t(S) � k.
(7.4.2)

The theorem is proved at the end of this section. The thick subcategories that appear in its
statement admit very explicit descriptions.

Remark 7.5. For each DG S-module M the following hold:

M ∈ thickS(S) ⇐⇒ M � M ′ with M ′ 
 finite free over S (7.5.1)

⇐⇒ H(M) is finite over S, (7.5.1′)

M ∈ thickS(k) ⇐⇒ H(M) is finite over k. (7.5.2)

For each DG Λ-module N the following hold:

N ∈ thickΛ(Λ) ⇐⇒ N � N ′ with N ′ 
 finite free over Λ, (7.5.3)

N ∈ thickΛ(k) ⇐⇒ H(N) is finite over k (7.5.4)

⇐⇒ H(N) is finite over Λ. (7.5.4′)

Indeed, (7.5.1) and (7.5.3) are special cases of Theorem 4.8, while (7.5.2) and (7.5.4) are spe-
cial cases of Theorem 6.4. When levelSS(M) is finite the graded S-module H(M) is noetherian
by 3.5.2: this establishes one direction of (7.5.1′). Conversely, when H(M) is finite from The-
orem 5.5 and the Syzygy Theorem one gets levelSS(M) � gl dimS = c + 1. Finally, (7.5.4′) is
evident as rankk Λ is finite.

7.6. The Koszul DG module. For use in the proof of Theorem 7.4, we collect homological prop-
erties of the DG module X introduced in 7.3.

7.6.1. Let ηΛ : k → Λ denote the structure map and εS :S → k the canonical augmentation. The
following map of DG S-modules is a quasi-isomorphism:

π :X = (Λ∗ ⊗k S
)δ (ηΛ)∗⊗εS−−−−−−→ k ⊗k k = k.
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Indeed, bigrading the complex of k-vector spaces underlying X by assigning to the indetermi-
nates ξi and xi homological degrees 1 and 0, respectively, one obtains the graded Koszul complex
on x1, . . . , xc ∈ S; its homology is equal to k.

7.6.2. Let ηS : k → S denote the structure map and εΛ :Λ → k the canonical augmentation. The
following map is a quasi-isomorphism of DG Λ-modules:

ι : k = k ⊗k k
(εΛ)∗⊗ηS−−−−−−→ (

Λ∗ ⊗ S
)δ = X.

As πι = idk and π is a quasi-isomorphism, ι is one as well. The induced map

ρ = Homk(ι, k) :X∗ −→ k

is a quasi-isomorphism of DG Λ-modules.

7.6.3. For every DG S-module M the complex X ⊗S M of k-vector spaces has a canonical struc-
ture of DG Λ-module, isomorphic to (Λ∗ ⊗k M)δ . Similarly, for every DG Λ-module N the
complex HomΛ(X∗,N) of k-vector spaces has a canonical structure of DG S-module, isomor-
phic to Homk(S

∗,N)δ .

7.6.4. The following functors preserve quasi-isomorphisms of DG S-modules

HomS(X,−), (X ⊗S −), and
(− ⊗S HomΛ

(
X∗,Λ

))
.

Indeed, by Theorem 4.8 and 3.1 it suffices to note that X
 and HomΛ(X∗,Λ)
 are finite free
over S. For the first module this is clear; for the second one has(

HomΛ

(
X∗,Λ

))
 ∼= Homk

(
S∗,Λ

)∼= Λ ⊗k S.

7.6.5. The following functors preserve quasi-isomorphisms of DG Λ-modules:

HomΛ

(
X∗,−) and HomΛ(−,X).

Indeed, since X∗
 ∼= Λ ⊗k S∗ as graded Λ-modules, X∗ is a direct summand of a semi-free
DG Λ-module by Proposition 4.4. Now apply 3.1 to X∗ and X ∼= X∗∗.

7.6.6. There exists an isomorphism of DG Λ-modules: Λ∗ ∼= Σ−dΛ; in particular, the functor
HomΛ(−,Λ) preserves quasi-isomorphisms of DG Λ-modules.

Indeed, (Λ∗)−d contains a unique k-linear map that sends ξ1 · · · ξc to 1k . It defines an element
ω ∈ (Σd(Λ∗))0. The homomorphism Λ → Σd(Λ∗) of graded Λ-modules, given by λ �→ λω, is
easily seen to be injective, and hence is bijective.

Proof of Theorem 7.4. As the functors (X ⊗S −) and HomΛ(X∗,−) preserve quasi-isomor-
phisms, see 7.6.4 and 7.6.5, they induce exact functors t : D(S) → D(Λ) and h : D(Λ) → D(S) of
the respective derived categories.
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Using the isomorphism π from 7.6.1, in D(Λ) one gets

t(S) = X ⊗S S = X � k.

Multiplication with δ induces the zero map on the DG module (Λ∗ ⊗k S)
 ⊗S k. From this
observation and 7.6.6 one obtains isomorphisms of DG Λ-modules

t(k) = X ⊗S k = (Λ∗ ⊗k S
)δ ⊗S k = (Λ∗ ⊗k S

)⊗S k ∼= Λ∗ ∼= Σ−dΛ.

Multiplication with δ annihilates HomΛ(Λ ⊗k (S∗), k)
. From this observation one obtains
isomorphisms of DG S-modules

h(k) = HomΛ(X∗, k) ∼= HomΛ

((
Λ ⊗k S∗)δ, k)= HomΛ

(
Λ ⊗k S∗, k

)∼= S.

Using the isomorphism ρ of DG Λ-modules from 7.6.2 and the exactness of the functor
HomΛ(−,Λ), see 7.6.6, one gets quasi-isomorphisms

h(Λ) = HomΛ

(
X∗,Λ

)� HomΛ(k,Λ) ∼= Σdk

of complexes of vector spaces. It yields h(Λ) � Σdk in D(S), see Proposition 3.12(1).
We have proved the isomorphisms in (7.4.2). They imply inclusions

h
(
thickΛ(Λ)

)⊆ thickS(k),

h
(
thickΛ(k)

)⊆ thickS(S)
and

t
(
thickS(k)

)⊆ thickΛ(Λ),

t
(
thickS(S)

)⊆ thickΛ(k)

of subcategories. The vertical inclusions in diagram (7.4.1) are clear.
The quasi-isomorphisms ρ from 7.6.2 and π from 7.6.1 are used again in the computations

below. For each DG S-module M one has canonical morphisms

M ∼= HomΛ

(
k,Homk(Λ,M)

)
∼= HomΛ

(
k,Λ∗ ⊗k M

)
= HomΛ

(
k,
(
Λ∗ ⊗k M

)δ)
∼= HomΛ(k,X ⊗S M)

HomΛ(ρ,X⊗SM)−−−−−−−−−−→ HomΛ

(
X∗,X ⊗S M

)
of DG S-modules; the equality holds because δ annihilates HomΛ(k,Λ∗ ⊗k M)
.

For each DG Λ-module N one has canonical morphisms

X ⊗S HomΛ

(
X∗,N

) π⊗SHomΛ(X∗,N)−−−−−−−−−−−→ k ⊗S HomΛ

(
X∗,N

)
∼= k ⊗S Homk

(
S∗,N

)δ
= k ⊗S Homk

(
S∗,N

)
∼= k ⊗S (S ⊗k N)

∼= N

of DG Λ-modules, with equality due to the relation δ · (k ⊗S Homk(S
∗,N))
 = 0.
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The morphisms above yield natural transformations of exact functors

σ : IdS → ht and λ : th → IdΛ.

They are, respectively, the unit and counit exhibiting t and h as adjoint functors.
To see that σ and λ restrict to isomorphisms on thickS(k) and thickΛ(Λ) respectively, it suffices

to show that the following maps are quasi-isomorphisms:

HomΛ(ρ,X ⊗S k) and π ⊗S HomΛ

(
X∗,Λ

)
.

For the first one use the isomorphisms of DG Λ-modules X ⊗S k ∼= Λ∗ ∼= Σ−dΛ, see 7.6.6. For
the second one apply 7.6.4.

To prove that σ and λ are isomorphisms on thickS(S) and thickΛ(k) respectively, it suffices to
show that the following maps are quasi-isomorphisms:

HomΛ(ρ,X ⊗S S) and π ⊗S HomΛ

(
X∗, k

)
.

The one on the left follows from 7.6.5, while that on the right follows from the isomorphism
HomΛ(X∗, k) ∼= S of DG S-modules. �
Proof of Theorem 7.1. Recall the hypothesis: N is a DG Λ-module in thickΛ(Λ), with
H(N) �= 0. The equivalences of categories h from Theorem 7.4 imply that rankk H(h(N)) is
finite and non-zero, and yields the first equality below:

levelkΛ(N) = levelSS
(
h(N)

)= c + 1.

The second one is given by Corollary 5.7. Finally, from Theorem 6.4(a) we get

card
{
n ∈ Z

∣∣Hn(N) �= 0
}

� levelkΛ(N). �
Remark 7.7. Several publications deal with equivalences of subcategories of the derived cate-
gories of DG modules D(S) and D(Λ): see [14, II.7], [1, App.] and the bibliography of the latter.
None of these is applicable to the present situation, for reasons having to do with specific choices
of gradings, restrictions on the characteristic of k, focus on different subcategories, or reliance
on tools from analysis.

Remark 7.8. Techniques in [18] allow for a different approach to Theorem 7.4.
The first step is to interpolate the endomorphism DG algebra E = HomΛ(X,X) between Λ

and S. Using [18, 4.10] one can then prove that the functors(− ⊗L
E k
)

: D(E) → D(Λ) and R HomΛ(k,−) : D(Λ) → D(E)

induce an equivalence of triangulated categories between D(Λ) and a certain subcategory of
D(E). It is well known that the homothety map S → E of DG algebras is a quasi-isomorphism.
It remains to track this subcategory of D(E) under the equivalence D(S) ≡ D(E). The necessary
calculations are similar to those used above to prove Theorem 7.4, so we have presented a direct
approach.
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8. The conormal rank of a local ring

For each local ring we introduce a numerical invariant that corresponds to the maximal rank
of a free direct summand of the conormal module of a graded algebra. We start by describing a
language convenient for the discussion.

8.1. Let (R,m, k) be a local ring.
A local presentation of R is simply an isomorphism of rings R ∼= Q/I , where (Q,q, k) is a

local ring. We say that such a presentation is minimal if edimR = edimQ, that is, if the ideal I

is contained in q2.
A local presentation R ∼= Q/I is regular if the ring Q is regular. If it is not minimal, then

choosing an element x ∈ I � q2 one obtains a regular presentation R ∼= (Q/Qx)/(I/Qx) with
edim(Q/Qx) = edimQ − 1. Iterating this procedure, one sees that every regular presentation
can be factored through a minimal one.

Regular presentations exist when R is essentially of finite type over a field, or when R is
complete: the latter case comes from Cohen’s Structure Theorem, which provides a presentation
R ∼= Q/I with a complete regular local ring Q.

Recall that for an R-module M the number f-rankR M , called the free rank of M over R, is
defined to be the maximal rank of a free direct summand of M .

8.2. We define the conormal free rank of R to be the number

cf-rankR = sup

{
f-rankR̂

(
I/I 2) ∣∣∣ R̂ ∼= Q/I is a minimal

regular presentation

}
.

Some estimates on the new invariant are easy to come by:

Lemma 8.3. Let R ∼= Q′/I ′ be a minimal presentation.

(1) The following equality holds: cf-rankR = cf-rank R̂.
(2) The following inequality holds: cf-rankR � f-rankR(I ′/I ′2).
(3) If I ′ = Q′x + I ′′ and x is a (Q′/I ′′)-regular sequence of length r , then

cf-rankR � r + f-rankR̂

(
I/I 2),

where I denotes the ideal I ′/(Q′x) in Q = Q′/(Q′x).

Proof. (1) The desired equality follows directly from the definition.
(2) We may assume R and Q′ are complete, as the induced isomorphism R̂ ∼= Q̂′/Î ′ is a

minimal presentation and one has f-rankR̂(Î ′/Î ′2) � f-rankR(I ′/I ′2). Choose a minimal regular
presentation Q′ ∼= Q/J . The composition Q → Q′ → R̂ induces a minimal regular presentation
R ∼= Q/I and a surjective homomorphism of R-modules I/I 2 → I ′/I ′2, which yields

f-rankR

(
I/I 2)� f-rankR

(
I ′/I ′2).

(3) This follows from a well known fact recorded in 8.4 below. �
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8.4. Let R ∼= Q′/I ′, where I ′ = Q′x + I ′′ and x = {x1, . . . , xr}. Set Q = Q′/(Q′x) and I =
I ′/(Q′x). If x is Q′/I ′′-regular, then the sequence of R-modules

0 −→ Rr �−→ I ′/I ′2 −→ I/I 2 −→ 0

where � maps the ith element of the standard basis of Rr to xi + I ′2 is split exact.
Indeed, for r = 1 this is in [21, Cor., p. 458]; the general case follows by iteration.

One says that R is equicharacteristic if char(k) · R = 0. We show that for such rings there
exists a reasonable notion of conormal module. Whether this is so in general is related to
Grothendieck’s Lifting Problem, discussed by Hochster in [21].

Proposition 8.5. Let (R,m, k) be an equicharacteristic local ring.
If R̂ ∼= Q/I and R̂ ∼= Q′/I ′ are minimal regular presentations with Q,Q′ equicharacteristic,

the R̂-modules I/I 2 and I ′/I ′2 are isomorphic. In particular, one has

cf-rankR = f-rankR

(
I/I 2).

Proof. Passing to completions, we may assume they are complete. The fiber product Q ×R

Q′ then is a complete equicharacteristic local ring. Choosing a minimal regular presentation of
Q ×R Q′, see 8.1, we get a commutative diagram of surjective homomorphisms of complete
equicharacteristic local rings

Q

P

π

π ′

Q ×R Q′ R

Q′

As P and Q are regular, the ideal Ker(π) is generated by elements x1, . . . , xr that form part
of a regular system of parameters for P . One has

r = dimP − dimQ = dimP − edimQ = dimP − edimR.

By Cohen’s Structure Theorem, the complete equicharacteristic local ring P is a ring of for-
mal power series over k in e = dimP formal variables. It follows that one may find elements
xr+1, . . . , xe in P such that P = k[[x1, . . . , xe]]; consequently, Q = k[[xr+1, . . . , xe]]. There is
thus an ideal J ′′ ⊆ (xr+1, . . . , xe) in P such that J ′′Q = I and J = (x1, . . . , xr ) + J ′′ where
J = Ker(P → R). Now 8.4 yields

J/J 2 ∼= I/I 2 ⊕ Rr
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as R-modules. By symmetry, a similar isomorphism holds with I ′ in place of I , so we get an
isomorphism of finitely generated modules over the complete ring R:

I/I 2 ⊕ Rr ∼= I ′/I ′2 ⊕ Rr.

From the Krull–Remak–Schmidt Theorem one gets I/I 2 ∼= I ′/I ′2. �
9. DG algebra models for Koszul complexes

In this section (R,m, k) denotes a local ring and K the Koszul complex on a minimal set
of generators of m. We prove two results that play a significant role in the proof of our main
theorem, given in the next section.

Theorem 9.1. Let A be a non-negative DG algebra, linked to K by a sequence of quasi-
isomorphisms of DG algebras, and let

j : D(K)
≡−→ D(A)

be the induced equivalence of categories. In D(A) there is then an isomorphism

j(K ⊗R k) �
⊕
n�0

ΣnH0(A)(
e
n) where e = edimR.

A special case is worth noting: in D(K) one has K ⊗R k �⊕n�0 Σ
nk(e

n).
The second result involves the conormal free rank of R, an invariant of the ring denoted

cf-rankR which is introduced and discussed in Section 8.

Theorem 9.2. Let (R,m, k) be a local ring, and set

e = edimR, d = depthR, c = cf-rankR.

Let Λ denote the exterior algebra
∧

k(Σkc) with ∂(Λ) = 0.
There exist quasi-isomorphisms of DG algebras linking K and Λ ⊗k B , where B is a DG

algebra with B0 = k, rankk B < ∞, ∂(B1) = 0 = ∂(B2), and

sup
{
i ∈ N

∣∣Hi (B) �= 0
}= e − d − c.

To prove Theorems 9.1 and 9.2 we use DG algebra resolutions of a special type.

9.3. Let (Q,q, k) be a local ring. A semi-free Γ -extension of Q is a DG algebra Q〈X〉, where
X is a set of divided powers indeterminates with Xn finite for each n � 1 and empty for n � 0.
Thus, the graded algebra underlying Q〈X〉 is a tensor product of the exterior algebra on the free
Q-module with ordered basis Xodd and the divided powers algebra on the free Q-module with
ordered basis Xeven.

For y ∈ Xeven we let y(n) denote the nth divided power of y. A Q-basis of Q〈X〉 is given
by all products xi1 · · ·xir y

(n1)
j1

· · ·y(ns)
js

with xiu ∈ Xodd and i1 < · · · < ir , with yiv ∈ Xeven and
j1 < · · · < js , and with r, s, nv � 0.

We let X(�2) denote the set of monomials with r + n1 + · · · + ns � 2.
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9.4. Let R ∼= Q/I be a regular presentation; see 8.1. An acyclic closure of R over Q is a quasi-
isomorphism ϕ :Q〈X〉 → R of DG algebras satisfying

∂(X) ⊆ I + qX + QX(�2).

Every presentation can be extended to an acyclic closure, see [5, §6.3].

Lemma 9.5. Let π :R → k denote the natural surjection, ρ :R → R̂ the completion map, and
(Q,q) → R̂ a minimal regular presentation. Let E be the Koszul complex on a minimal generat-
ing set of q and ε :E → k the canonical augmentation.

If ϕ :Q〈X〉 → R̂ is an acyclic closure, then there is a morphism � :Q〈X〉 → E of DG Γ -
algebras making the following diagram commute.

R
ρ

π

R̂

π̂

�
ϕ

Q〈X〉
�

k k
ε

�
E

Furthermore, each such morphism satisfies �(Q〈X〉)�1 ⊆ qE.

Proof. The map ε is a quasi-isomorphism because Q is regular. The existence of � follows from
general principles: Q〈X〉 is free as an algebra with divided powers over Q, the Q-algebra E has
a system of divided powers, and E → k is a quasi-isomorphism. To finish the proof it suffices to
show that �(Q〈X�n〉)�1 ⊆ qE holds for each integer n � 0. We proceed by induction on n.

The desired inclusion holds trivially for n = 0 because one has Q〈X�0〉 = Q by definition.
Assuming that the inclusion holds for some n � 0, one has

∂�(Xn+1) = �∂(Xn+1)

⊆ �
(
IQ0 + qXn + (X�n)

(�2)
)

⊆ q2E0 + q�(Xn) + (�(X�n)
)(�2)

⊆ q2E.

Indeed, the first equality holds because � is a morphism of complexes. The first inclusion comes
from the formula in 9.4. The second one is a consequence of the hypothesis that the presentation
is minimal and the fact that � is a homomorphism of algebras with divided powers. The last
inclusion results from the induction hypothesis and the identity (ay)(n) = any(n) for a ∈ Q.

As an algebra with divided powers, Q〈X�n+1〉 is generated over Q〈X�n〉 by the set X�n+1.
Thus, the inclusion established above implies ∂(�(Q〈X�n+1〉)�1) ⊆ q2E. A result of Serre [37,
Ch. IV, App. I, Prop. 3], see [5, 4.1.6(2)], now yields �(Q〈X�n+1〉)�1 ⊆ qE, and the induction
step is complete. �
Proof of Theorem 9.1. Recall that K denotes the Koszul complex on a minimal set of generators
of m. In view of Proposition 3.9 and 3.6.3, to prove the theorem it suffices to construct a spe-
cific non-negative DG algebra A with H0(A) = k and to produce a chain of quasi-isomorphisms
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linking K and A, such that for the induced equivalence of categories j : D(K) → D(A) there is an
isomorphism

j(K ⊗R k) ∼=
⊕
n�0

Σnk(e
n). (9.5.6)

Let ρ :R → R̂ be the completion map and Q → R̂ a minimal regular presentation. Set A =
k ⊗Q Q〈X〉, where ϕ :Q〈X〉 → R̂ is an acyclic closure, see 9.4. Set K̂ = K ⊗R R̂, let E be the
Koszul complex on a minimal generating set of the maximal ideal q of Q, and let η : k → k ⊗Q E

denote the structure map. We claim that the following diagram of morphisms of DG Q-algebras
commutes:

k k k k k

ηK
K⊗Rρ

�
K⊗Rπ

K̂

K̂⊗R̂ π̂

E ⊗Q R̂

E⊗Qπ̂

�
E⊗Qϕ

E ⊗Q Q〈X〉
E⊗Q�

�
ε⊗QQ〈X〉

A

k⊗Q�

K ⊗R k
�

K̂ ⊗R̂ k E ⊗Q k
�

E⊗Qε
E ⊗Q E

�
ε⊗QE

k ⊗Q E

Indeed, Lemma 9.5 shows that the squares commute and yields �(Q〈X〉�1) ⊆ qE; this implies
(k ⊗Q �)(A�1) = 0, so the triangle on the right commutes as well.

In the bottom left square one has quasi-isomorphisms because ρ is flat and the R-modules
H(K) and H(K ⊗R k) have finite length. The other quasi-isomorphisms hold because E and
Q〈X〉 are bounded below complexes of free Q-modules.

The middle row in the diagram is a sequence of quasi-isomorphism of DG algebras linking
K with A. Let j : D(K) → D(A) be the equivalence of triangulated categories induced by it. In
view of the commutativity of the bottom part of the diagram, repeated application of 3.6.3 gives
in D(A) an isomorphism

j(K ⊗R k) � k ⊗Q E.

The triangle containing η implies A�1 · (k ⊗Q E) = 0, while the inclusion ∂(E) ⊆ qE yields
∂(k ⊗Q E) = 0. Thus, one has an isomorphism of DG A-modules

k ⊗Q E ∼=
⊕
n�0

Σnk(e
n).

Concatenating the isomorphisms above one obtains (9.5.6), as desired. �
The next proof is similar to that of [23, 2.1]; it uses an idea from [3].

Proof of Theorem 9.2. Let R̂ ∼= Q/I be a minimal regular presentation such that one has
f-rankR̂(I/I 2) = c. Choose elements a = a1, . . . , ac in I whose images form a basis for a free
summand of I/I 2. The Koszul complex on the elements a is an exterior algebra Q〈x1, . . . , xc〉
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with the x indeterminates in degree 1 and differential defined by ∂(xi) = ai . By Nakayama’s
Lemma a can be extended to a minimal generating set for the ideal I , so this Koszul complex
can be extended to acyclic closure Q〈X〉 �−→ R̂ with {x1, . . . , xc} a subset of X1.

We use the notation of Lemma 9.5. It follows from the proof of Theorem 9.1 that there exists
a quasi-isomorphism of DG algebras

K → K̂ = E ⊗Q R̂
E⊗Qϕ←−−−− E ⊗Q Q〈X〉.

We claim that one has an isomorphism of DG algebras

E ⊗Q Q〈X〉 ∼= Q〈z1, . . . , zc〉 ⊗Q E〈Y 〉,

where |zi | = 1 and ∂(zi) = 0 for i = 1, . . . , c, and Yn = ∅ for n � 0.
Indeed, there are derivations θ1, . . . , θc of the DG Γ -algebra Q〈X〉 such that θi(x1) = 1 and

θi(x) = 0 for all x ∈ X1 \ {x1}; see [5, 6.2.7] and also [23, 1.4]. Replacing θi by θi − xiθ
2
i one

may assume in addition θ2
i = 0 holds. These derivations extend to E-linear derivations θ̃1, . . . , θ̃c

of the DG Γ -algebra E〈X〉 = E ⊗Q Q〈X〉 with (θ̃i )
2 = 0. Since I ⊆ ∂(E1) holds there are

elements e1, . . . , ec in E1 such that ∂(ei) = ai for each i. Evidently, the elements zi = xi − ei are
cycles of degree 1 in E〈X〉 satisfying θ̃i (zj ) = δij . Set Y ′ = {x − z1θ̃1(x) | x ∈ X \ {x1}}. These
are indeterminates over E and the induce a bijective morphism of DG Γ -algebras

Q〈z1〉 ⊗Q E〈Y ′〉 → E〈X〉.

It is not hard to verify that the derivations θ̃2, . . . , θ̃c restrict to derivations on E〈Y ′〉. Iteratiing
the procedure one gets the desired isomorphism of DG algebras.

Since E〈Y 〉 is semi-free as a DG E-module, the quasi-isomorphism ε :E → k induces a quasi-
isomorphism of DG algebras

E〈Y 〉 = E〈Y 〉 ⊗E E
E〈Y 〉⊗Eε−−−−−−→ E〈Y 〉 ⊗E k = C

where C = k〈Y 〉. In turn, it induces the quasi-isomorphism below:

Q〈z1, . . . , zc〉 ⊗Q E〈Y 〉 �−→ Q〈z1, . . . , zc〉 ⊗Q C ∼= Λ ⊗k C.

The description of the acyclic closure Q〈X〉, see 9.4, shows that C is non-negative, rankk Cn is
finite for each n, C0 = k, and ∂(C1) = 0 = ∂(C2) holds. Set b = e − d − c and note the equalities

sup
{
i ∈ N

∣∣Hi (C) �= 0
}= sup

{
i ∈ N

∣∣Hi (K) �= 0
}− c = b.

The first one comes from the isomorphisms H(K) ∼= H(Λ ⊗k C) ∼= Λ ⊗k H(C). The second one
is from the Auslander–Buchsbaum Formula. It is easy to check that

D = · · · → Cb+2 → Cb+1 → ∂(Cb+1) → 0

is a DG ideal of C with H(D) = 0. Thus, B = C/D is a DG k-algebra with Bn = 0 for n > b

and the canonical surjection C → B is a quasi-isomorphism of DG algebras. It induces a quasi-
isomorphism of DG algebras Λ ⊗k C → Λ ⊗k B .



L.L. Avramov et al. / Advances in Mathematics 223 (2010) 1731–1781 1775
Now we have produced a DG algebra B that has the required properties, and we have linked
K with Λ ⊗k B by a chain of quasi-isomorphisms of DG algebras. �
10. Loewy length of homology of perfect complexes

In this section we prove the following result; it contains Theorem 3.

Theorem 10.1. Let (R,m, k) be a local ring. Each finite free complex F of R-modules with
H(F ) �= 0 satisfies the following inequalities:∑

n∈Z

��RHn(F ) � levelkR(F ) � cf-rankR + 1.

Recall that the closed fiber of a local homomorphism (P,p) → Q is the local ring Q/pQ.
The following corollary contains Theorem 2 from the introduction.

Corollary 10.2. If R̂ is the closed fiber of a flat local homomorphism P → Q, then∑
n∈Z

��RHn(F ) � s + 1,

where s = edimP − edimQ + edimR. In particular, one has ms �= 0.

Proof. Set p = edimP , q = edimQ, and r = edimR. Let x = x1, . . . , xp be a generating set for
the maximal ideal p of P ; thus, R̂ = Q/xQ. Reindexing, if necessary, we may assume xi ∈ q\q2

for 1 � i � q − r and xi ∈ q2 otherwise.
Set Q′ = Q/(x1, . . . , xq−r ) and I ′ = (xq−r+1, . . . , xp)Q′. One gets a minimal presentation

R̂ ∼= Q′/I ′ with I ′/I ′2 ∼= (p/p′′) ⊗k R, where p′′ = (x1, . . . , xq−r )P + p2. Thus the R̂-module
I ′/I ′2 is free of rank p − q + r = s, so the theorem applies. �

Theorem 10.1 has an analogue for complexes of finite injective dimension.

Corollary 10.3. Let C be a bounded complex of injective R-modules with H(C) finitely generated
and non-zero. The following inequalities then hold:∑

n∈Z

��RHn(C) � levelkR(C) � cf-rankR + 1.

Proof. We may assume ��RH(C) is finite. Since the R-module H(C) is finitely generated, this
assumption implies that �R H(C) is finite, see 6.1.2, so Theorem 6.2(3) yields the desired upper
bound on levelkR(C).

Let E be the injective hull of k. Since �R H(C) is finite, one may replace C with a quasi-
isomorphic complex if necessary, and assume that it is a finite complex with each Ci a finite
direct sum of copies of E. Thus the complex F = HomR(C,E) is finite free over R̂ and the
functor HomR(−,E) : D(R)op → D(R̂) is exact, so

levelk (C) � levelk (F )
R R̂
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holds by Lemma 2.4(6). Combining this with Theorem 10.1, we get the desired lower bound on
levelkR(C). �

Given this corollary, it is clear that one has also an analogue of Corollary 10.2 for complexes,
and, in particular, for modules, of finite injective dimension.

The preceding results are optimal, in the sense that all the inequalities involved may become
equalities, as the following example demonstrates.

Example 10.4. Let f1, . . . , fp be a regular sequence in k[[y1, . . . , yq ]]. The local ring R =
k[[y1, . . . , yq ]]/(f1, . . . , fp) is the closed fiber of the flat homomorphism

k[[x1, . . . , xp]] −→ k[[y1, . . . , yq ]]

of complete k-algebras that sends xi to fi for i = 1, . . . , p.
Take fi ∈ q2 for i = 1, . . . , p, and F the Koszul complex on the images in R of y1, . . . , yq .

One then has H1(F ) ∼= kp and H(F ) ∼=∧H1(F ), whence the equalities in the next display, while
Theorems 10.1 and 8.2 give the inequalities:

p + 1 =
∑
n∈Z

��RHn(F ) � levelkR(F ) � cf-rankR + 1 � p + 1.

Thus, equalities hold throughout. As one has p = edimP and edimQ = q = edimR, the in-
equality in Corollary 10.2 is sharp.

Take p = q , let E be the injective hull of the R-module k, and form the complex C =
HomR(F,E) of injective R-modules. The isomorphisms

Hi (C) ∼= HomR

(
H−i (F ),E

)∼= Homk

(∧i
k

(
kp
)
, k
)

show that all three quantities in the formula of Corollary 10.3 are equal to p + 1.

Proof of Theorem 10.1. Several DG algebras are used in the argument. Set

c = cf-rankR

and fix the following notation for the duration of the proof:

K is the Koszul complex on a minimal generating set for the ideal m,

Λ is the exterior algebra over k on c variables of degree 1, with ∂Λ = 0.

By Theorem 9.2 there exists a DG k-algebra B with rankk B < ∞, such that

A = Λ ⊗k B is linked to K by a sequence of quasi-isomorphisms.

The argument hinges on a sequence of exact functors of triangulated categories

D(R)
k

D(K)
j

≡ D(A)
i

D(Λ)
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where the first category is the derived category of R-modules, the rest are derived categories of
DG modules over DG algebras. The functors are as follows:

k = K ⊗R −; it is exact because the R-module K is flat,

j is the equivalence induced by the quasi-isomorphisms of Theorem 9.2,

i = ι∗ where ι :Λ → Λ ⊗k B is the inclusion of DG k-algebras.

The flow chart below captures the structure of the argument:
The assertion of the theorem is obtained by concatenating the sequence of (in)equalities dis-

played in the zigzagging line in the middle.
The column on the left indicates the category in which a given numerical invariant is com-

puted, and displays functors between such categories.
The column on the right tracks conditions needed for the final equality.

∑
n��RHn(F )

\∨(1)

H(F ) �= 0 & F perfect

(1′)

D(R)

k

levelkR(F )

\∨(2)

levelRR(F ) �= 0,∞

(2′)

D(K)

j ≡

levelk(k)
K (k(F ))

(3)

levelKK(k(F )) �= 0,∞

(3′)

D(A)

i

leveljk(k)
A (jk(F ))

(4)
levelkA(jk(F ))

\∨(5)

levelAA(jk(F )) �= 0,∞

(5′)

D(Λ) levelkΛ(ijk(F )) levelΛΛ(ijk(F )) �= 0,∞

(6)

c + 1

(7)

H(ijk(F )) �= 0 & ijk(F ) perfect

What follows are step by step directions for climbing down the chart.

(1) comes from Theorems 6.2(3) and 6.1.3;
(1′) holds by Example 2.5.3;
(2) holds because k is an exact functor; see Lemma 2.4(6);

(2′) is seen as follows: The exactness of k implies, as above, that levelKK(k(F )) is finite; it is
non-zero because one has H(K ⊗R F) �= 0, see the end of the proof;

(3) and (3′) hold because j is an equivalence of categories; see Proposition 3.7(1);
(4) holds because one has smd(addΣ(jk(k))) = smd(addΣ(k)), by Theorem 9.1;
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(5) holds because i is an exact functor and i(k) = k; see Lemma 2.4(6);
(5′) is seen as follows: levelΛΛ(ijk(F )) is non-zero since H(ijk(F )) ∼= H(k(F )) �= 0; it is finite

because levelAA(jk(F )) is and Corollary 4.6 applies;
(6) holds by definition;
(7) is Theorem 7.1.

It remains to show that H(K ⊗R F) is not equal to zero. Since F is homologically bounded,
the number i = inf{n ∈ Z | Hn(F ) �= 0} is finite and F is quasi-isomorphic to a complex L with
Lj = 0 for all j < i. We then get

Hi (K ⊗R F) ∼= Hi (K ⊗R L) ∼= H0(K) ⊗R Hi (L) = k ⊗R Hi (F ) �= 0

by using flatness, right exactness of tensor products, and Nakayama’s Lemma. �
11. Complete intersection local rings

We have thus far focused mainly on complexes admitting finite free resolutions. In this final
section we turn to complete intersection local rings, over which we extend Theorem 10.1 to a
statement applying to all homologically finite complexes.

11.1. Complexity. Let (R,m, k) be a local ring and M a homologically finite complex of R-
modules. A minimal free resolution of M is a quasi-isomorphism F

�−→ M where F is a complex
of free R-modules whose differential satisfies ∂(F ) ⊆ mF . Such a resolution exists and is unique
up to isomorphism of complexes; see [30].

The complexity of M over R is the number

cxR M = inf

{
d � 0

∣∣∣ there exists an integer a > 0 such that
rankR(Fn) � and−1 for all n � 0

}
.

Evidently, cxR M = 0 holds if and only if M is perfect.

11.2. Let (R,m, k) be a local ring and R̂ its m-adic completion.
The ring R is said to be complete intersection if for some regular presentation R̂ ∼= P/I ,

see 8.1, the conormal module I/I 2 is free over R̂. This is equivalent to I being generated by a
P -regular sequence; see [12, 2.2.8]. Such R satisfy

cf-rankR = codimR,

where cf-rankR is the conormal free rank of R; see Lemma 8.3(3), and codimR denotes the
codimension of R, that is, the difference edimR − dimR.

The following result contains Theorem 7 from the Introduction. Over complete intersections it
extends Theorem 10.1, from which it is deduced by using a result from [4]. A different approach
to its proof is given in [8].
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Theorem 11.3. Let R be a complete intersection local ring and M a complex of R-modules with
H(M) finite and non-zero. One then has inequalities∑

n∈Z

��RHn(M) � levelkR(M) � codimR − cxR M + 1.

The number codimR − cxR M in the inequality above is non-negative; see 11.4.2.
For the proofs we recall basic facts about complexity.

11.4. Let R be a local ring, M a complex of R-modules with H(M) finitely generated, and let F

be a minimal free resolution of M .

11.4.1. Fix an integer s such that Hn(M) = 0 for n � s and set C = Hs(F�s). Evidently, Σ−sF�s

is a minimal free resolution of C, and hence cxR C = cxR M .

11.4.2. If there exists a local presentation R̂ ∼= Q/I such that I is generated by a regular sequence
and R̂ ⊗R M is perfect over Q, then the following inequality holds:

cxR M � dimQ − dimR.

This follows from [4, 3.2(3)], in view of 11.4.1; see also [35, 3.10].

When the ring R is a complete intersection, [4, 3.6] provides a converse to 11.4.2 for modules.
We extend that result to complexes.

Proposition 11.5. Let R be a complete intersection with an infinite residue field and M a complex
of R-modules with H(M) finitely generated.

There exists then a minimal presentation R̂ ∼= Q/J , such that J is generated by a regular
sequence of length cxR M and R̂ ⊗R M is perfect over Q.

Proof. Set cxR M = d , and let F be a minimal free resolution of M . The complex R̂ ⊗R F is a
minimal free resolution of R̂ ⊗R M over R̂, and so cxR̂ (R̂ ⊗ M) = d holds. Thus, passing to R̂,
one may assume that the ring R is complete.

Set s = max{n | Hn(M) �= 0} and C = Hs(F�s). Applying [4, 3.6] to a minimal regular pre-
sentation of R, see 8.1, one obtains a minimal presentation R ∼= Q/J with J generated by a
Q-regular sequence of length d and C perfect over Q.

Since cxR C = d , see 11.4.1, it remains to verify that M is perfect over Q. The inclusion of
complexes F<s ⊆ F yields an exact triangle

F<s → M → ΣsC → ΣF<s

in D(R). The Q-module R is perfect, because the Koszul complex on a minimal generating set
for J is a free resolution. This implies that the bounded complex of free R-modules F<s is perfect
over Q as well; see, for example, Lemma 2.5.2. The exact triangle above now implies that M is
perfect over Q, as desired. �
Proof of Theorem 11.3. It suffices to verify the inequality on the right, by Theorem 6.2(3)
and 6.1.3. One may assume that k is infinite. If not, for an indeterminate x over k one has flat
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local homomorphism (R,m, k) → (R′,m′, k′) with R′ = R[x]m[x] and k′ = k(x). The complex
R′ ⊗R M of R′-modules then has

levelkR(M) � levelk
′

R′(M ′) and cxR M = cxR′ M ′

with inequality given by Proposition 3.7, and equality by the observation that if F is a minimal
free resolution of M over R, then R′ ⊗R F is one of M ′ over R′.

Let R̂ ∼= Q/J be a minimal presentation as in Proposition 11.5. Set M̂ = R̂ ⊗R M ; this is a
complex of R̂-modules with H(M̂) isomorphic to H(M), as the latter has finite length. One then
has the following chain of (in)equalities:

levelkR(M) � levelk
R̂
(M̂)

� levelkQ(M̂)

� codimQ + 1

= codimR − cxR M + 1.

The first one holds because R̂ ⊗R − : D(R) → D(R̂) is an exact functor; the second one holds
because the restriction D(R) → D(Q) is an exact functor. The third inequality comes from The-
orem 10.1, and the equality from the relations

edimQ = edimR and dimQ = dimR + cxR M,

which are implied by the construction of the ring Q. �
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