research

On Resource-bounded versions of the van Lambalgen theorem

Abstract

The van Lambalgen theorem is a surprising result in algorithmic information theory concerning the symmetry of relative randomness. It establishes that for any pair of infinite sequences AA and BB, BB is Martin-L\"of random and AA is Martin-L\"of random relative to BB if and only if the interleaved sequence ABA \uplus B is Martin-L\"of random. This implies that AA is relative random to BB if and only if BB is random relative to AA \cite{vanLambalgen}, \cite{Nies09}, \cite{HirschfeldtBook}. This paper studies the validity of this phenomenon for different notions of time-bounded relative randomness. We prove the classical van Lambalgen theorem using martingales and Kolmogorov compressibility. We establish the failure of relative randomness in these settings, for both time-bounded martingales and time-bounded Kolmogorov complexity. We adapt our classical proofs when applicable to the time-bounded setting, and construct counterexamples when they fail. The mode of failure of the theorem may depend on the notion of time-bounded randomness

    Similar works

    Full text

    thumbnail-image

    Available Versions