149 research outputs found

    Herbal extracts modulate the amplitude and frequency of slow waves in circular smooth muscle of mouse small intestine

    Get PDF
    Background: Herbal preparations like STW 5 (Iberogast(R)) are widely used drugs in the treatment of dyspepsia and motility-related disorders of the gastrointestinal tract. STW 5 is a phytotherapeutic agent consisting of a fixed mixture of 9 individual plant extracts. The electrophysiological mechanisms of action of STW 5 remain obscure. Aim: The aim of the present study was to investigate whether herbal extracts influence electrophysiological parameters of the small intestine. For this purpose, the resting membrane potential (RMP) and the slow wave rhythmicity of smooth muscle cells of mouse small intestine were observed. Methods: Intracellular recordings of smooth muscle cells of the circular muscle layer of mouse small intestine were performed using standard microelectrode techniques. After dissection of the mucosa, the small intestine was placed in an organ bath and a microelectrode was applied on a circular smooth muscle cell. The RMP and the amplitude of slow waves were measured in millivolts. Results: The RMP of smooth muscle cells was - 59 +/- 1.3 mV. This RMP was significantly depolarized by STW 5 ( 9.6 +/- 1.6 mV); the depolarizing effects can be mainly attributed to the constituents of matricariae flos, angelicae radix and chelidonii herba. The basal frequency of small intestinal slow waves was 39.5 +/- 1.4 min(-1) and the amplitude was 23.1 +/- 0.9 mV. STW 5 significantly reduced the amplitude and frequency of the slow waves ( 11.7 +/- 0.8 mV; 33.5 +/- 3.4 min(-1)). This effect on slow waves represents the sum of the effects of the 9 phytoextracts. Whereas angelicae radix and matricariae flos completely blocked slow wave activity, Iberis amara increased the frequency and amplitude, chelidonii herba reduced the frequency and amplitude of the slow waves, mentae piperitae folium reduced the frequency and left amplitude unchanged and liquiritae radix, carvi fructus and melissae folium had no effects. Conclusion: Herbal extracts cause changes in smooth muscle RMP and slow wave rhythmicity, up to reversible abolition, by blockade of large conductance Ca2+ channels and other not yet identified mechanisms. In herbal preparations like STW 5 these effects add up to a total effect and this study indicates that herbal preparations which are widely used in dyspepsia and motility-related disorders have characteristic, reproducible, reversible effects on small intestinal electrophysiology. Copyright (C) 2005 S. Karger AG, Basel

    Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum

    Get PDF
    Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general

    Quantifying Variability of Avian Colours: Are Signalling Traits More Variable?

    Get PDF
    Background Increased variability in sexually selected ornaments, a key assumption of evolutionary theory, is thought to be maintained through condition-dependence. Condition-dependent handicap models of sexual selection predict that (a) sexually selected traits show amplified variability compared to equivalent non-sexually selected traits, and since males are usually the sexually selected sex, that (b) males are more variable than females, and (c) sexually dimorphic traits more variable than monomorphic ones. So far these predictions have only been tested for metric traits. Surprisingly, they have not been examined for bright coloration, one of the most prominent sexual traits. This omission stems from computational difficulties: different types of colours are quantified on different scales precluding the use of coefficients of variation. Methodology/Principal Findings Based on physiological models of avian colour vision we develop an index to quantify the degree of discriminable colour variation as it can be perceived by conspecifics. A comparison of variability in ornamental and non-ornamental colours in six bird species confirmed (a) that those coloured patches that are sexually selected or act as indicators of quality show increased chromatic variability. However, we found no support for (b) that males generally show higher levels of variability than females, or (c) that sexual dichromatism per se is associated with increased variability. Conclusions/Significance We show that it is currently possible to realistically estimate variability of animal colours as perceived by them, something difficult to achieve with other traits. Increased variability of known sexually-selected/quality-indicating colours in the studied species, provides support to the predictions borne from sexual selection theory but the lack of increased overall variability in males or dimorphic colours in general indicates that sexual differences might not always be shaped by similar selective forces

    A multimodal approach for tracing lateralization along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies

    Full text link
    Recent studies have revealed asymmetries between the left and right sides of the brain in invertebrate species. Here we present a review of a series of recent studies from our labs, aimed at tracing asymmetries at different stages along the honeybee's (Apis mellifera) olfactory pathway. These include estimates of the number of sensilla present on the two antennae, obtained by scanning electron microscopy, as well as electroantennography recordings of the left and right antennal responses to odorants. We describe investigative studies of the antennal lobes, where multi-photon microscopy is used to search for possible morphological asymmetries between the two brain sides. Moreover, we report on recently published results obtained by two-photon calcium imaging for functional mapping of the antennal lobe aimed at comparing patterns of activity evoked by different odours. Finally, possible links to the results of behavioural tests, measuring asymmetries in single-sided olfactory memory recall, are discussed.Comment: 28 pages, 8 figure

    Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells

    Get PDF
    Background: The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Methodology and Results: Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. Conclusions: The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.Phillip Cassey, Steven J. Portugal, Golo Maurer, John G. Ewen, Rebecca L. Boulton, Mark E. Hauber and Tim M. Blackbur

    Mechanisms, functions and ecology of colour vision in the honeybee.

    Get PDF
    notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC
    corecore