8,573 research outputs found

    Non-contact method for measurement of the microwave conductivity of graphene

    Full text link
    We report a non-contact method for conductivity and sheet resistance measurements of graphene samples using a high Q microwave dielectric resonator perturbation technique, with the aim of fast and accurate measurement of microwave conductivity and sheet resistance of monolayer and few layers graphene samples. The dynamic range of the microwave conductivity measurements makes this technique sensitive to a wide variety of imperfections and impurities and can provide a rapid non-contacting characterisation method. Typically the graphene samples are supported on a low-loss dielectric substrate, such as quartz, sapphire or SiC. This substrate is suspended in the near-field region of a small high Q sapphire puck microwave resonator. The presence of the graphene perturbs both centre frequency and Q value of the microwave resonator. The measured data may be interpreted in terms of the real and imaginary components of the permittivity, and by calculation, the conductivity and sheet resistance of the graphene. The method has great sensitivity and dynamic range. Results are reported for graphene samples grown by three different methods: reduced graphene oxide (GO), chemical vapour deposition (CVD) and graphene grown epitaxially on SiC. The latter method produces much higher conductivity values than the others.Comment: 8 pages, 2 figures and 2 table

    The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil

    Full text link
    Under application of an electric field greater than a triggering electric field Ec∼0.4E_c \sim 0.4 kV/mm, suspensions obtained by dispersing particles of the synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or column-like structures parallel to the applied electric field. This micro-structuring results in a transition in the suspensions' rheological behavior, from a Newtonian-like behavior to a shear-thinning rheology with a significant yield stress. This behavior is studied as a function of particle volume fraction and strength of the applied electric field, EE. The steady shear flow curves are observed to scale onto a master curve with respect to EE, in a manner similar to what was recently found for suspensions of laponite clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield stress is demonstrated to scale with respect to EE as a power law with an exponent α∼1.93\alpha \sim 1.93, while the static yield stress inferred from constant shear stress tests exhibits a similar behavior with α∼1.58\alpha \sim 1.58. The suspensions are also studied in the framework of thixotropic fluids: the bifurcation in the rheology behavior when letting the system flow and evolve under a constant applied shear stress is characterized, and a bifurcation yield stress, estimated as the applied shear stress at which viscosity bifurcation occurs, is measured to scale as EαE^\alpha with α∼0.5\alpha \sim 0.5 to 0.6. All measured yield stresses increase with the particle fraction Φ\Phi of the suspension. For the static yield stress, a scaling law Φβ\Phi^\beta, with β=0.54\beta = 0.54, is found. The results are found to be reasonably consistent with each other. Their similarities with-, and discrepancies to- results obtained on laponite-oil suspensions are discussed

    Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

    Get PDF
    We present a novel approach for finding and evaluating structural models of small metallic nanoparticles. Rather than fitting a single model with many degrees of freedom, the approach algorithmically builds libraries of nanoparticle clusters from multiple structural motifs, and individually fits them to experimental PDFs. Each cluster-fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles

    Mid-Infrared Spectra of Classical AGN Observed with the Spitzer Space Telescope

    Full text link
    Full low resolution (65<R<130) and high resolution (R~600) spectra between 5 microns and 37 microns obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope are presented for eight classical active galactic nuclei (AGN) which have been extensively studied previously. Spectra of these AGN are presented as comparison standards for the many objects, including sources at high redshift, which are being observed spectroscopically in the mid-infrared for the first time using the IRS. The AGN are NGC4151, Markarian 3, I Zwicky 1, NGC 1275, Centaurus A, NGC 7469, Markarian 231, and NGC 3079. These sources are used to demonstrate the range of infrared spectra encountered in objects which have widely different classification criteria at other wavelengths but which unquestionably contain AGN. Overall spectral characteristics - including continuum shape, nebular emission lines, silicate absorption and emission features, and PAH emission features - are considered to understand how spectral classifications based on mid-infrared spectra relate to those previously derived from optical spectra. The AGN are also compared to the same parameters for starburst galaxies such as NGC 7714 and the compact, low metallicity starburst SBS 0335-052 previously observed with the IRS. Results confirm the much lower strengths of PAH emission features in AGN, but there are no spectral parameters in this sample which unambiguously distinguish AGN and starbursts based only on the slopes of the continuous spectra.Comment: Accepted by Ap

    Probing Quantum Hall Pseudospin Ferromagnet by Resistively Detected NMR

    Full text link
    Resistively Detected Nuclear Magnetic Resonance (RD-NMR) has been used to investigate a two-subband electron system in a regime where quantum Hall pseudo-spin ferromagnetic (QHPF) states are prominently developed. It reveals that the easy-axis QHPF state around the total filling factor ν=4\nu =4 can be detected by the RD-NMR measurement. Approaching one of the Landau level (LL) crossing points, the RD-NMR signal strength and the nuclear spin relaxation rate 1/T11/T_{1} enhance significantly, a signature of low energy spin excitations. However, the RD-NMR signal at another identical LL crossing point is surprisingly missing which presents a puzzle

    Phenomenological theory of a scalar electronic order: application to skutterudite PrFe4P12

    Full text link
    By phenomenological Landau analysis, it is shown that a scalar order parameter with the point-group symmetry Γ1g\Gamma_{1g} explains most properties associated with the phase transition in PrFe4_4P12_{12} at 6.5 K. The scalar-order model reproduces magnetic and elastic properties in PrFe4_4P12_{12} consistently such as (i) the anomaly of the magnetic susceptibility and elastic constant at the transition temperature, (ii) anisotropy of the magnetic susceptibility in the presence of uniaxial pressure, and (iii) the anomaly in the elastic constant in magnetic field. An Ehrenfest relation is derived which relates the anomaly of the magnetic susceptibility to that of the elastic constant at the transition.Comment: 16 pages, 9 figure

    Neutron Transfer reactions induced by 8Li on 9Be

    Get PDF
    Angular distributions for the elastic scattering of 8Li on 9Be and the neutron transfer reactions 9Be(8Li,7Li)10Be and 9Be(8Li,9Li)8Be have been measured with a 27 MeV 8Li radioactive nuclear beam. Spectroscopic factors for 8Li|n=9Li and 7Li|n=8Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions 7Li(n,g)8Li and 8Li(n,g)9Li were calculated in the framework of a potential model.Comment: 24 pages, 8 Figures, submitted as regular article to PR

    First mid-infrared spectrum of a faint high-z galaxy: Observations of CFRS 14.1157 with the Infrared Spectrograph on the Spitzer Space Telescope

    Full text link
    The unprecedented sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope allows for the first time the measurement of mid-infrared spectra from 14 to 38 microns of faint high-z galaxies. This unique capability is demonstrated with observations of sources having 16 micron fluxes of 3.6 mJy (CFRS 14.1157) and 0.35 mJy (CFRS 14.9025). A spectral-fitting technique is illustrated which determines the redshift by fitting emission and absorption features characteristic of nearby galaxies to the spectrum of an unknown source. For CFRS 14.1157, the measured redshift is z = 1.00+/-0.20 in agreement with the published result of z = 1.15. The spectrum is dominated by emission from an AGN, similar to the nucleus of NGC 1068, rather than a typical starburst with strong PAH emission like M82. Such spectra will be crucial in characterizing the nature of newly discovered distant galaxies, which are too faint for optical follow-up.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 5 figure

    Universal bifurcation property of two- or higher-dimensional dissipative systems in parameter space: Why does 1D symbolic dynamics work so well?

    Full text link
    The universal bifurcation property of the H\'enon map in parameter space is studied with symbolic dynamics. The universal-LL region is defined to characterize the bifurcation universality. It is found that the universal-LL region for relative small LL is not restricted to very small bb values. These results show that it is also a universal phenomenon that universal sequences with short period can be found in many nonlinear dissipative systems.Comment: 10 pages, figures can be obtained from the author, will appeared in J. Phys.

    On the origin of multiple ordered phases in PrFe4P12

    Full text link
    The nature of multiple electronic orders in skutterudite PrFe_4P_{12} is discussed on the basis of a model with antiferro-quadrupole (AFQ) interaction of \Gamma_3 symmetry. The high-field phase can be reproduced qualitatively provided (i) ferro-type interactions are introduced between the dipoles as well as between the octupoles of localized f-electrons, and (ii) separation is vanishingly small between the \Gamma_1-\Gamma_4^{(1)} crystalline electric field (CEF) levels. The high-field phase can have either the same ordering vector q=(1,0,0) as in the low-field phase, or a different one q=0 depending on the parameters. In the latter case, distortion of the crystal perpendicular to the (111) axis is predicted. The corresponding anomaly in elastic constants should also appear. The electrical resistivity is calculated with account of scattering within the CEF quasi-quartet. It is found that the resistivity as a function of the direction of magnetic field shows a sharp maximum around the (111) axis at low temperatures because of the level crossing.Comment: 16 pages, 5 figure
    • …
    corecore