131 research outputs found

    The Genomedata format for storing large-scale functional genomics data

    Get PDF
    Summary: We present a format for efficient storage of multiple tracks of numeric data anchored to a genome. The format allows fast random access to hundreds of gigabytes of data, while retaining a small disk space footprint. We have also developed utilities to load data into this format. We show that retrieving data from this format is more than 2900 times faster than a naive approach using wiggle files

    Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

    Full text link
    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation, and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte

    The mTOR inhibitor temsirolimus added to rituximab combined with dexamethasone, cytarabine, and cisplatinum (R-DHAP) for the treatment of patients with relapsed or refractory DLBCL - results from the phase-II STORM trial

    Get PDF
    There is a high need for novel treatment options in relapsed and refractory diffuse large B-cell lymphoma. Single agent mammalian target of rapamycin (mTOR) inhibitor treatment has shown promising efficacy in this entity. Here, we report on the results of the mTOR-inhibitor temsirolimus combined to standard rituximab-DHAP salvage regimen in a prospective, multicenter, phase II, open-label study. The STORM regimen consisted of rituximab 375 mg/m(2) (day 2) and DHAP (dexamethasone 40 mg day 3-6, cisplatinum 100 mg/m(2) day 3, cytarabine 2 × 2  g/m(2) day 4) with temsirolimus added on day 1 and 8 of a 21-day cycle, with 2 to 4 cycles planned. In part I, dose levels of 25, 50, 75, and 100 mg for temsirolimus were predefined. Based on the observed toxicity profile, a temsirolimus dose of 25 mg was defined as recommended dose for the part II extension cohort of the trial. The intention-to-treat cohort comprised 53 patients. Median age was 63 years and median number of prior regimen was 1. All but 1 patient had prior rituximab exposure. Temsirolimus dose was 50 mg on day 1 and 8 in 6 patients from the part I of the trial and 25 mg in the remaining 47 patients. In general, treatment was well tolerated with leucopenia and thrombocytopenia as most frequent severe adverse events. The overall response rate after the last cycle of temsirolimus R-DHAP was 66% with 24% complete responses. The ability to mobilize stem cells was not impaired by the treatment regimen. Twenty-eight patients received consolidation treatment with high-dose therapy (HDT) and stem cell transplantation. Median duration of response was not reached. The total 2-year progression-free survival (PFS) and overall survival (OS) were 53% and 59%. Patients who were consolidated with HDT achieved a 2-year PFS and a 2-year OS of 77.8% and 82.1%, respectively. We conclude that temsirolimus can be safely added to rituximab and DHAP with promising activity

    iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data

    Get PDF
    High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is conditional on the development of effective computational methods for the identification and quantification of transcripts from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation of their abundances. Our probabilistic approach incorporates multiple biological and technical phenomena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and multimapped reads. iReckon utilizes regularized expectation-maximization to accurately estimate the abundances of known and novel isoforms. Our results on simulated and real data demonstrate a superior ability to discover novel isoforms with a significantly reduced number of false-positive predictions, and our abundance accuracy prediction outmatches that of other state-of-the-art tools. Furthermore, we have applied iReckon to two cancer transcriptome data sets, a triple-negative breast cancer patient sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in the MCF7 cell line confirmed all of iReckon's predictions and also showed strong agreement (r2 = 0.94) with the predicted abundances

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    Combined changes in Wnt signalling response and contact inhibition induce altered proliferation in radiation treated intestinal crypts

    Get PDF
    Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis

    Physician supply forecast: better than peering in a crystal ball?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anticipating physician supply to tackle future health challenges is a crucial but complex task for policy planners. A number of forecasting tools are available, but the methods, advantages and shortcomings of such tools are not straightforward and not always well appraised. Therefore this paper had two objectives: to present a typology of existing forecasting approaches and to analyse the methodology-related issues.</p> <p>Methods</p> <p>A literature review was carried out in electronic databases Medline-Ovid, Embase and ERIC. Concrete examples of planning experiences in various countries were analysed.</p> <p>Results</p> <p>Four main forecasting approaches were identified. The supply projection approach defines the necessary inflow to maintain or to reach in the future an arbitrary predefined level of service offer. The demand-based approach estimates the quantity of health care services used by the population in the future to project physician requirements. The needs-based approach involves defining and predicting health care deficits so that they can be addressed by an adequate workforce. Benchmarking health systems with similar populations and health profiles is the last approach. These different methods can be combined to perform a gap analysis. The methodological challenges of such projections are numerous: most often static models are used and their uncertainty is not assessed; valid and comprehensive data to feed into the models are often lacking; and a rapidly evolving environment affects the likelihood of projection scenarios. As a result, the internal and external validity of the projections included in our review appeared limited.</p> <p>Conclusion</p> <p>There is no single accepted approach to forecasting physician requirements. The value of projections lies in their utility in identifying the current and emerging trends to which policy-makers need to respond. A genuine gap analysis, an effective monitoring of key parameters and comprehensive workforce planning are key elements to improving the usefulness of physician supply projections.</p

    Antidesma montanum: biochemistry and bioactive compounds

    Get PDF
    Antidesma montanum is commonly known as a mountain currant tree. Its fruits and leaves are utilized locally for food and traditional medicine, meanwhile the stem is used as source of wood. The fruit contains bioactive constituents of steroid glycosides, saponins, flavonoids, polyphenols and tannins that exhibited higher antioxidant activity than at certain concentrations of standard antioxidants (i.e. vitamin E, ascorbic acid, and trolox). The leave extracts known to inhibit the activities of α-amylase and α-glucosidase in diabetic therapy. Furthermore, the leave extracts also possessed scavenging activity against both hydroxyl and superoxide anion radicals, and inhibited the nitric oxide production. Meanwhile, another studies reported on the anti-inflammatory effect of Antidesma montanum, being used to treat eye diseases, and relieving chest pain. The leaves are used externally against headache and thrush in children, for diuretic and removing kidney stone, anti-dermatitis and skin disease curing effect. A tea from the leaves is used as a tonic for mothers after giving birth and applied topically to ulcers and lumbar pains. The roots are used to treat measles, chickenpox, malaria, and stomach ache. Nevertheless, extensive research is needed to confirm the reputed beneficial effects of Antidesma montanum in traditional medicine

    Comparing individual-based approaches to modelling the self-organization of multicellular tissues.

    Get PDF
    The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage

    Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Get PDF
    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression
    corecore