279 research outputs found
Ion-induced electron production in tissue-like media and DNA damage mechanisms
We propose an inclusive approach for calculating characteristics of secondary
electrons produced by ions/protons in tissue-like media. This approach is based
on an analysis of the projectile's interaction with the medium on the
microscopic level. It allows us to obtain the energy spectrum and abundance of
secondary electrons as functions of the projectile kinetic energy. The physical
information obtained in this analysis is related to biological processes
responsible for the irrepearable DNA damage induced by the projectile. In
particular, we consider double strand breaks of DNA caused by secondary
electrons and free radicals, and local heating in the ion's track. The heating
may enhance the biological effectiveness of electron/free radical interactions
with the DNA and may even be considered as an independent mechanism of DNA
damage. Numerical estimates are performed for the case of carbon-ion beams. The
obtained dose-depth curves are compared with results of the MCHIT model based
on the GEANT4 toolkit.Comment: 9 pages, 7 figures, submitted to EPJD, included class files
svepj.clo, svjour.cl
Impurity effects on the melting of Ni clusters
We demonstrate that the addition of a single carbon impurity leads to
significant changes in the thermodynamic properties of Ni clusters consisting
of more than a hundred atoms. The magnitude of the change induced is dependent
upon the parameters of the Ni-C interaction. Hence, thermodynamic properties of
Ni clusters can be effectively tuned by the addition of an impurity of a
particular type. We also show that the presence of a carbon impurity
considerably changes the mobility and diffusion of atoms in the Ni cluster at
temperatures close to its melting point. The calculated diffusion coefficients
of the carbon impurity in the Ni cluster can be used for a reliable estimate of
the growth rate of carbon nanotubes.Comment: 27 pages, 13 figure
Rigorous treatment of electrostatics for spatially varying dielectrics based on energy minimization
A novel energy minimization formulation of electrostatics that allows
computation of the electrostatic energy and forces to any desired accuracy in a
system with arbitrary dielectric properties is presented. An integral equation
for the scalar charge density is derived from an energy functional of the
polarization vector field. This energy functional represents the true energy of
the system even in non-equilibrium states. Arbitrary accuracy is achieved by
solving the integral equation for the charge density via a series expansion in
terms of the equation's kernel, which depends only on the geometry of the
dielectrics. The streamlined formalism operates with volume charge
distributions only, not resorting to introducing surface charges by hand.
Therefore, it can be applied to any spatial variation of the dielectric
susceptibility, which is of particular importance in applications to
biomolecular systems. The simplicity of application of the formalism to real
problems is shown with analytical and numerical examples.Comment: 27 pages, 5 figure
Rearrangement of cluster structure during fission processes
Results of molecular dynamics simulations of fission reactions and are presented. Dependence
of the fission barriers on isomer structure of the parent cluster is analyzed.
It is demonstrated that the energy necessary for removing homothetic groups of
atoms from the parent cluster is largely independent of the isomer form of the
parent cluster. Importance of rearrangement of the cluster structure during the
fission process is elucidated. This rearrangement may include transition to
another isomer state of the parent cluster before actual separation of the
daughter fragments begins and/or forming a "neck" between the separating
fragments
Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso
Electron antineutrino interactions above the inverse beta decay energy of
protons (E_\bar{\nu}_e>1.8) where looked for with the Borexino Counting Test
Facility (CTF). One candidate event survived after rejection of background,
which included muon-induced neutrons and random coincidences. An upper limit on
the solar flux, assumed having the B solar neutrino energy
spectrum, of 1.1 cm~s (90% C.L.) was set with a 7.8
ton year exposure. This upper limit corresponds to a solar neutrino
transition probability, , of 0.02 (90% C.L.).
Predictions for antineutrino detection with Borexino, including geoneutrinos,
are discussed on the basis of background measurements performed with the CTF.Comment: 10 pages, 9 figures, 5 table
Pulse-Shape discrimination with the Counting Test Facility
Pulse shape discrimination (PSD) is one of the most distinctive features of
liquid scintillators. Since the introduction of the scintillation techniques in
the field of particle detection, many studies have been carried out to
characterize intrinsic properties of the most common liquid scintillator
mixtures in this respect. Several application methods and algorithms able to
achieve optimum discrimination performances have been developed. However, the
vast majority of these studies have been performed on samples of small
dimensions. The Counting Test Facility, prototype of the solar neutrino
experiment Borexino, as a 4 ton spherical scintillation detector immersed in
1000 tons of shielding water, represents a unique opportunity to extend the
small-sample PSD studies to a large-volume setup. Specifically, in this work we
consider two different liquid scintillation mixtures employed in CTF,
illustrating for both the PSD characterization results obtained either with the
processing of the scintillation waveform through the optimum Gatti's method, or
via a more conventional approach based on the charge content of the
scintillation tail. The outcomes of this study, while interesting per se, are
also of paramount importance in view of the expected Borexino detector
performances, where PSD will be an essential tool in the framework of the
background rejection strategy needed to achieve the required sensitivity to the
solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
New limits on heavy sterile neutrino mixing in -decay obtained with the Borexino detector
If heavy neutrinos with mass 2 are produced in the
Sun via the decay in a side
branch of pp-chain, they would undergo the observable decay into an electron, a
positron and a light neutrino . In the
present work Borexino data are used to set a bound on the existence of such
decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV 14 MeV to be
respectively. These are tighter limits on the mixing parameters than obtained
in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector
We report the measurement of electron neutrino elastic scattering from 8B
solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran
Sasso (Italy). The rate of solar neutrino-induced electron scattering events
above this energy in Borexino is 0.217 +- 0.038 (stat) +- 0.008 (syst) cpd/100
t, which corresponds to the equivalent unoscillated flux of (2.4 +- 0.4 (stat)
+- 0.1 (syst))x10^6 cm^-2 s^-1, in good agreement with measurements from SNO
and SuperKamiokaNDE. Assuming the 8B neutrino flux predicted by the high
metallicity Standard Solar Model, the average 8B neutrino survival probability
above 3 MeV is measured to be 0.29+-0.10. The survival probabilities for 7Be
and 8B neutrinos as measured by Borexino differ by 1.9 sigma. These results are
consistent with the prediction of the MSW-LMA solution of a transition in the
solar electron neutrino survival probability between the low energy
vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation
regimes.Comment: 10 pages, 8 figures, 6 table
Recent Borexino results and prospects for the near future
The Borexino experiment, located in the Gran Sasso National Laboratory, is an
organic liquid scintillator detector conceived for the real time spectroscopy
of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010)
has allowed the first independent measurements of 7Be, 8B and pep fluxes as
well as the first measurement of anti-neutrinos from the earth. After a
purification of the scintillator, Borexino is now in phase II since 2011. We
review here the recent results achieved during 2013, concerning the seasonal
modulation in the 7Be signal, the study of cosmogenic backgrounds and the
updated measurement of geo-neutrinos. We also review the upcoming measurements
from phase II data (pp, pep, CNO) and the project SOX devoted to the study of
sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr
antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de
Moriond EW 201
- …