6,020 research outputs found
A Search for Intrinsic Polarization in O Stars with Variable Winds
New observations of 9 of the brightest northern O stars have been made with
the Breger polarimeter on the 0.9~m telescope at McDonald Observatory and the
AnyPol polarimeter on the 0.4~m telescope at Limber Observatory, using the
Johnson-Cousins UBVRI broadband filter system. Comparison with earlier
measurements shows no clearly defined long-term polarization variability. For
all 9 stars the wavelength dependence of the degree of polarization in the
optical range can be fit by a normal interstellar polarization law. The
polarization position angles are practically constant with wavelength and are
consistent with those of neighboring stars. Thus the simplest conclusion is
that the polarization of all the program stars is primarily interstellar.
The O stars chosen for this study are generally known from ultraviolet and
optical spectroscopy to have substantial mass loss rates and variable winds, as
well as occasional circumstellar emission. Their lack of intrinsic polarization
in comparison with the similar Be stars may be explained by the dominance of
radiation as a wind driving force due to higher luminosity, which results in
lower density and less rotational flattening in the electron scattering inner
envelopes where the polarization is produced. However, time series of
polarization measurements taken simultaneously with H-alpha and UV spectroscopy
during several coordinated multiwavelength campaigns suggest two cases of
possible small-amplitude, periodic short-term polarization variability, and
therefore intrinsic polarization, which may be correlated with the more widely
recognized spectroscopic variations.Comment: LaTeX2e, 22 pages including 11 tables; 12 separate gif figures; uses
aastex.cls preprint package; accepted by The Astronomical Journa
A dynamical magnetosphere model for periodic Halpha emission from the slowly rotating magnetic O star HD191612
The magnetic O-star HD191612 exhibits strongly variable, cyclic Balmer line
emission on a 538-day period. We show here that its variable Halpha emission
can be well reproduced by the rotational phase variation of synthetic spectra
computed directly from full radiation magneto-hydrodynamical simulations of a
magnetically confined wind. In slow rotators such as HD191612, wind material on
closed magnetic field loops falls back to the star, but the transient
suspension of material within the loops leads to a statistically overdense, low
velocity region around the magnetic equator, causing the spectral variations.
We contrast such "dynamical magnetospheres" (DMs) with the more steady-state
"centrifugal magnetospheres" of stars with rapid rotation, and discuss the
prospects of using this DM paradigm to explain periodic line emission from also
other non-rapidly rotating magnetic massive stars.Comment: 5 pages, 5 figures, accepted for publication in MNRAS letter
The Carbon footprint of B[e] supergiants
We report on the first detection of C enhancement in two B[e]
supergiants in the Large Magellanic Cloud. Stellar evolution models predict the
surface abundance in C to strongly increase during main-sequence and
post-main sequence evolution of massive stars. However, direct identification
of chemically processed material on the surface of B[e] supergiants is hampered
by their dense, disk-forming winds, hiding the stars. Recent theoretical
computations predict the detectability of enhanced C via the molecular
emission in CO arising in the circumstellar disks of B[e] supergiants.
To test this potential method and to unambiguously identify a post-main
sequence B[e]SG by its CO emission, we have obtained high-quality
-band spectra of two known B[e] supergiants in the Large Magellanic Cloud,
using the Very Large Telescope's Spectrograph for INtegral Field Observation in
the Near-Infrared (VLT/SINFONI). Both stars clearly show the CO band
emission, whose strength implies a strong enhancement of C, in agreement
with theoretical predictions. This first ever direct confirmation of the
evolved nature of B[e] supergiants thus paves the way to the first
identification of a Galactic B[e] supergiant.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice
Although most of the proposed beneficial effects of fiber consumption have been attributed to viscous and gel-forming properties of soluble fiber, it is mainly insoluble cereal fiber and whole grains that are strongly associated with reduced diabetes risk in prospective cohort studies, indicating that other unknown mechanisms are likely to be involved.
We performed a long-term study investigating potential protective effects of adding soluble guar fiber (10% w/w) vs. insoluble cereal fiber (10% w/w) to an isoenergetic and macronutrient matched high-fat diet in obesity-prone C57BL/6J mice. After 45 weeks, mice fed soluble vs. insoluble fiber showed both significantly increased body weight (41.8±3.0 vs. 33.6±1.5 g, P=.03) and elevated markers of insulin resistance. In mice fed soluble fiber, energy loss via the feces was significantly lower and colonic fermentation with production of short chain fatty acids (SCFA) was markedly increased. Gene expression analysis in white adipose tissue showed significantly increased levels of the fatty acid target G-protein coupled receptor-40 in soluble fiber-fed mice. Liver gene expression in the insoluble fiber group showed a pattern consistent with increased fatty acid oxidation. The present results show that soluble vs insoluble dietary fiber added to a high-fat, Western-style diet differently affected body weight and estimates of insulin sensitivity in obesity-prone mice. Soluble fiber intake with increased SCFA production significantly contributed to digested energy, thereby potentially outweighing the well known short-term beneficial effects of soluble fiber consumption
Fe XI emission lines in a high resolution extreme ultraviolet spectrum obtained by SERTS
New calculations of radiative rates and electron impact excitation cross
sections for Fe XI are used to derive emission line intensity ratios involving
3s^23p^4 - 3s^23p^33d transitions in the 180-223 A wavelength range. These
ratios are subsequently compared with observations of a solar active region,
obtained during the 1995 flight Solar EUV Research Telescope and Spectrograph
(SERTS). The version of SERTS flown in 1995 incorporated a multilayer grating
that enhanced the instrumental sensitivity for features in the 170 - 225 A
wavelength range, observed in second-order between 340 and 450 A. This
enhancement led to the detection of many emission lines not seen on previous
SERTS flights, which were measured with the highest spectral resolution (0.03
A) ever achieved for spatially resolved active region spectra in this
wavelength range. However, even at this high spectral resolution, several of
the Fe XI lines are found to be blended, although the sources of the blends are
identified in the majority of cases. The most useful Fe XI electron density
diagnostic line intensity ratio is I(184.80 A)/I(188.21 A). This ratio involves
lines close in wavelength and free from blends, and which varies by a factor of
11.7 between N_e = 10^9 and 10^11 cm^-3, yet shows little temperature
sensitivity. An unknown line in the SERTS spectrum at 189.00 A is found to be
due to Fe XI, the first time (to our knowledge) this feature has been
identified in the solar spectrum. Similarly, there are new identifications of
the Fe XI 192.88, 198.56 and 202.42 A features, although the latter two are
blended with S VIII/Fe XII and Fe XIII, respectively.Comment: 21 pages, 9 gigures, accepted for publication in the Astrophysical
Journa
Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions
Open clusters offer us the means to study stellar properties in samples with
well-defined ages and initial chemical composition. Here we present a survey of
projected rotational velocities for a large sample of mainly B-type stars in
young clusters to study the time evolution of the rotational properties of
massive stars. The survey is based upon moderate resolution spectra made with
the WIYN 3.5 m and CTIO 4 m telescopes and Hydra multi-object spectrographs,
and the target stars are members of 19 young open clusters with an age range of
approximately 6 to 73 Myr. We made fits of the observed lines He I 4026, 4387,
4471 and Mg II 4481 using model theoretical profiles to find projected
rotational velocities for a total of 496 OB stars. We find that there are fewer
slow rotators among the cluster B-type stars relative to nearby B stars in the
field. We present evidence consistent with the idea that the more massive B
stars (M > 9 solar masses) spin down during their main sequence phase. However,
we also find that the rotational velocity distribution appears to show an
increase in the numbers of rapid rotators among clusters with ages of 10 Myr
and higher. These rapid rotators appear to be distributed between the zero age
and terminal age main sequence locations in the Hertzsprung-Russell diagram,
and thus only a minority of them can be explained as the result of a spin up at
the terminal age main sequence due to core contraction. We suggest instead that
some of these rapid rotators may have been spun up through mass transfer in
close binary systems.Comment: 33 pages, 11 figures, accepted by Ap
Mass and Angular Momentum Transfer in the Massive Algol Binary RY Persei
We present an investigation of H-alpha emission line variations observed in
the massive Algol binary, RY Per. We give new radial velocity data for the
secondary based upon our optical spectra and for the primary based upon high
dispersion UV spectra. We present revised orbital elements and an estimate of
the primary's projected rotational velocity (which indicates that the primary
is rotating 7 times faster than synchronous). We use a Doppler tomography
algorithm to reconstruct the individual primary and secondary spectra in the
region of H-alpha, and we subtract the latter from each of our observations to
obtain profiles of the primary and its disk alone. Our H-alpha observations of
RY Per show that the mass gaining primary is surrounded by a persistent but
time variable accretion disk. The profile that is observed outside-of-eclipse
has weak, double-peaked emission flanking a deep central absorption, and we
find that these properties can be reproduced by a disk model that includes the
absorption of photospheric light by the band of the disk seen in projection
against the face of the star. We developed a new method to reconstruct the disk
surface density distribution from the ensemble of H-alpha profiles observed
around the orbit, and this method accounts for the effects of disk occultation
by the stellar components, the obscuration of the primary by the disk, and flux
contributions from optically thick disk elements. The resulting surface density
distribution is elongated along the axis joining the stars, in the same way as
seen in hydrodynamical simulations of gas flows that strike the mass gainer
near trailing edge of the star. This type of gas stream configuration is
optimal for the transfer of angular momentum, and we show that rapid rotation
is found in other Algols that have passed through a similar stage.Comment: 39 pages, 12 figures, ApJ in press, 2004 June 20 issu
A multiwavelength approach to the SFR estimation in galaxies at intermediate redshifts
We use a sample of 7 starburst galaxies at intermediate redshifts (z ~ 0.4
and z ~ 0.8) with observations ranging from the observed ultraviolet to 1.4
GHz, to compare the star formation rate (SFR) estimators which are used in the
different wavelength regimes. We find that extinction corrected Halpha
underestimates the SFR, and the degree of this underestimation increases with
the infrared luminosity of the galaxies. Galaxies with very different levels of
dust extinction as measured with SFR(IR)/SFR(Halpha, uncorrected for
extinction) present a similar attenuation A[Halpha], as if the Balmer lines
probed a different region of the galaxy than the one responsible for the bulk
of the IR luminosity for large SFRs. In addition, SFR estimates derived from
[OII]3727 match very well those inferred from Halpha after applying the
metallicity correction derived from local galaxies. SFRs estimated from the UV
luminosities show a dichotomic behavior, similar to that previously reported by
other authors in galaxies at z <~ 0.4. Here we extend this result up to z ~
0.8. Finally, one of the studied objects is a luminous compact galaxy (LCG)
that may be suffering similar dust-enshrouded star formation episodes. These
results highlight the relevance of quantifying the actual L(IR) of LCGs, as
well as that of a much larger and generic sample of luminous infrared galaxies,
which will be possible after the launch of SIRTF.Comment: Accepted for publication in The Astrophysical Journa
The Magnetorotational Instability in Core Collapse Supernova Explosions
We investigate the action of the magnetorotational instability (MRI) in the
context of iron-core collapse. Exponential growth of the field on the rotation
time scale by the MRI will dominate the linear growth process of field line
"wrapping" with the same characteristic time. We examine a variety of initial
rotation states, with solid body rotation or a gradient in rotational velocity,
that correspond to models in the literature. A relatively modest value of the
initial rotation, a period of ~ 10 s, will give a very rapidly rotating PNS and
hence strong differential rotation with respect to the infalling matter. We
assume conservation of angular momentum on spherical shells. Results are
discussed for two examples of saturation fields, a fiducial field that
corresponds to Alfven velocity = rotational velocity and a field that
corresponds to the maximum growing mode of the MRI. Modest initial rotation
velocities of the iron core result in sub-Keplerian rotation and a
sub-equipartition magnetic field that nevertheless produce substantial MHD
luminosity and hoop stresses: saturation fields of order 10^{15} - 10^{16} G
develop within 300 msec after bounce with an associated MHD luminosity of about
10^{52} erg/s. Bi-polar flows driven by this MHD power can affect or even cause
the explosions associated with core-collapse supernovae.Comment: 42 pages, including 15 figures. Accepted for publication in ApJ. We
have revised to include an improved treatment of the convection, and some
figures have been update
The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars
Aims: Projected rotational velocities (\vsini) have been estimated for 334
targets in the VLT-FLAMES Tarantula survey that do not manifest significant
radial velocity variations and are not supergiants. They have spectral types
from approximately O9.5 to B3. The estimates have been analysed to infer the
underlying rotational velocity distribution, which is critical for
understanding the evolution of massive stars.
Methods: Projected rotational velocities were deduced from the Fourier
transforms of spectral lines, with upper limits also being obtained from
profile fitting. For the narrower lined stars, metal and non-diffuse helium
lines were adopted, and for the broader lined stars, both non-diffuse and
diffuse helium lines; the estimates obtained using the different sets of lines
are in good agreement. The uncertainty in the mean estimates is typically 4%
for most targets. The iterative deconvolution procedure of Lucy has been used
to deduce the probability density distribution of the rotational velocities.
Results: Projected rotational velocities range up to approximately 450 \kms
and show a bi-modal structure. This is also present in the inferred rotational
velocity distribution with 25% of the sample having \ve100\,\kms
and the high velocity component having \ve\,\kms. There is no
evidence from the spatial and radial velocity distributions of the two
components that they represent either field and cluster populations or
different episodes of star formation. Be-type stars have also been identified.
Conclusions: The bi-modal rotational velocity distribution in our sample
resembles that found for late-B and early-A type stars. While magnetic braking
appears to be a possible mechanism for producing the low-velocity component, we
can not rule out alternative explanations.Comment: to be publisged in A&
- …
