New calculations of radiative rates and electron impact excitation cross
sections for Fe XI are used to derive emission line intensity ratios involving
3s^23p^4 - 3s^23p^33d transitions in the 180-223 A wavelength range. These
ratios are subsequently compared with observations of a solar active region,
obtained during the 1995 flight Solar EUV Research Telescope and Spectrograph
(SERTS). The version of SERTS flown in 1995 incorporated a multilayer grating
that enhanced the instrumental sensitivity for features in the 170 - 225 A
wavelength range, observed in second-order between 340 and 450 A. This
enhancement led to the detection of many emission lines not seen on previous
SERTS flights, which were measured with the highest spectral resolution (0.03
A) ever achieved for spatially resolved active region spectra in this
wavelength range. However, even at this high spectral resolution, several of
the Fe XI lines are found to be blended, although the sources of the blends are
identified in the majority of cases. The most useful Fe XI electron density
diagnostic line intensity ratio is I(184.80 A)/I(188.21 A). This ratio involves
lines close in wavelength and free from blends, and which varies by a factor of
11.7 between N_e = 10^9 and 10^11 cm^-3, yet shows little temperature
sensitivity. An unknown line in the SERTS spectrum at 189.00 A is found to be
due to Fe XI, the first time (to our knowledge) this feature has been
identified in the solar spectrum. Similarly, there are new identifications of
the Fe XI 192.88, 198.56 and 202.42 A features, although the latter two are
blended with S VIII/Fe XII and Fe XIII, respectively.Comment: 21 pages, 9 gigures, accepted for publication in the Astrophysical
Journa